主题链接:
题目:
Sorting It All Out
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will
give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of
the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character
"<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y. Sorted sequence cannot be determined. Inconsistency found after xxx relations. where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence. Sample Input 4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0 Sample Output Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined. Source |
这个题目对拓扑排序考虑的很细致。。
考虑了成环的情况。成环的情况也就是最后存在入度不为0的点。。
则计数后最后的num不等于n。。
这个题目还有就是这个题目不是对全部的信息进行综合推断,而是依据前面的假设可以得到已经成环了,或者可以得到n的大小顺序了,则后面的就不用推断了。。。所以用ok1,ok2两个变量进行控制。。
。
代码为:
#include<cstdio> #include<stack> #include<iostream> #include<cstring> #include<algorithm> using namespace std; const int maxn=26+10; int n,m; int in[maxn],Copy[maxn],map[maxn][maxn],temp[maxn]; stack<int>S; int topo() { int flag=0,num=0; while(!S.empty()) S.pop(); memcpy(Copy,in,sizeof(in)); for(int i=0;i<n;i++) { if(Copy[i]==0) S.push(i); } while(!S.empty()) { if(S.size()>1) flag=1; int Gery=S.top(); S.pop(); temp[num++]=Gery; for(int i=0;i<n;i++) { if(map[Gery][i]) { if(--Copy[i]==0) S.push(i); } } } if(num!=n) return 0;//成环。则已经能够确定关系了,能够标记。 if(flag) return 1;//有多个入度为0的点,则还不确定。继续输入信息。添加条件,看能否够得到顺序。 return 2;//顺序已经得到确定。能够标记。} int main() { char str[maxn]; int ok1,ok2,u,v,i,is_n; while(~scanf("%d%d",&n,&m),n,m) { is_n=0; memset(in,0,sizeof(in)); memset(map,0,sizeof(map)); ok1=ok2=0; for(i=1;i<=m;i++) { scanf("%s",str); if(!ok1&&!ok2) { u=str[0]-'A'; v=str[2]-'A'; if(map[u][v]==0) { map[u][v]=1; in[v]++; } int ans=topo(); if(ans==0) { is_n=i; ok2=1; } else if(ans==2) { is_n=i; ok1=1; } } } if(ok1) { printf("Sorted sequence determined after %d relations: ",is_n); for(int i=0;i<n-1;i++) printf("%c",temp[i]+'A'); printf("%c. ",temp[n-1]+'A'); } if(ok2) printf("Inconsistency found after %d relations. ",is_n); if(ok1==0&&ok2==0) printf("Sorted sequence cannot be determined. "); } return 0; }
版权声明:本文博客原创文章。博客,未经同意,不得转载。