zoukankan      html  css  js  c++  java
  • _00023 Kafka 奇怪的操作_001它们的定义Encoder达到Class数据传输水平和决心

    博文作者:妳那伊抹微笑
    博客地址:http://blog.csdn.net/u012185296
    博文标题:_00023 Kafka 诡异操作_001自己定义Encoder实现Class级别的数据传送以及解析
    个性签名:世界上最遥远的距离不是天涯,也不是海角。而是我站在妳的面前,妳却感觉不到我的存在
    技术方向:Flume+Kafka+Storm+Redis/Hbase+Hadoop+Hive+Mahout+Spark ... 云计算技术
    转载声明:能够转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明。谢谢合作。
    qq交流群:214293307  云计算之嫣然伊笑(期待与你一起学习。共同进步)

    # Kafka 高级部分之自己定义Encoder实现Class级别的数据传送已经解析

    # 前言

    本博文中用到的全部project代码。jar包什么的都已经上传到群214293307共享中,须要的话自己下载研究了。

    本博文《_00023 Kafka 诡异操作_001自己定义Encoder实现Class级别的数据传送以及解析》中的Eclipseproject代码下载地址 http://download.csdn.net/detail/u012185296/7648993

    # Class级别信息Send的原理

    简单的说就是将一个Class给序列化成一个Byte[]。然后再将Byte[]给反序列化成一个Class,前提是这个Class必须实现java.io.Serializable这个接口就OK,是不是非常easy,饿靠!、、、

    然后再自己定义Encoder即可了,以下是一个參考案例,使用一个User类

    # 自己定义Encoder实现Class级别的producer和consumer

    在这里我们使用一个User类作为producer的send。详细请看以下的源码

    #自己定义Partition实现HashCode Partition

    详细请看以下的源码

    # 执行 UserProducer,以下是执行结果(Eclipse下执行)

    log4j:WARN No appenders could be found for logger(kafka.utils.VerifiableProperties).

    log4j:WARN Please initialize the log4j system properly.

    SLF4J: Failed to load class"org.slf4j.impl.StaticLoggerBinder".

    SLF4J: Defaulting to no-operation (NOP) loggerimplementation

    SLF4J: Seehttp://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

    User [addr=addr000, age=age0, id=id000,name=name000, sex=sex0]

    encoder ---> User [addr=addr000,age=age0, id=id000, name=name000, sex=sex0]

    encoder ---> User [addr=addr000,age=age0, id=id000, name=name000, sex=sex0]

    hash partition ---> User [addr=addr000,age=age0, id=id000, name=name000, sex=sex0]

    User [addr=addr001, age=age1, id=id001,name=name001, sex=sex1]

    encoder ---> User [addr=addr001,age=age1, id=id001, name=name001, sex=sex1]

    encoder ---> User [addr=addr001,age=age1, id=id001, name=name001, sex=sex1]

    hash partition ---> User [addr=addr001,age=age1, id=id001, name=name001, sex=sex1]

    User [addr=addr002, age=age2, id=id002,name=name002, sex=sex0]

    encoder ---> User [addr=addr002,age=age2, id=id002, name=name002, sex=sex0]

    encoder ---> User [addr=addr002,age=age2, id=id002, name=name002, sex=sex0]

    hash partition ---> User [addr=addr002,age=age2, id=id002, name=name002, sex=sex0]

    User [addr=addr003, age=age3, id=id003,name=name003, sex=sex1]

    encoder ---> User [addr=addr003,age=age3, id=id003, name=name003, sex=sex1]

    encoder ---> User [addr=addr003,age=age3, id=id003, name=name003, sex=sex1]

    hash partition ---> User [addr=addr003,age=age3, id=id003, name=name003, sex=sex1]

    User [addr=addr004, age=age4, id=id004,name=name004, sex=sex0]

    encoder ---> User [addr=addr004,age=age4, id=id004, name=name004, sex=sex0]

    encoder ---> User [addr=addr004,age=age4, id=id004, name=name004, sex=sex0]

    hash partition ---> User [addr=addr004,age=age4, id=id004, name=name004, sex=sex0]

    User [addr=addr005, age=age5, id=id005,name=name005, sex=sex1]

    encoder ---> User [addr=addr005,age=age5, id=id005, name=name005, sex=sex1]

    encoder ---> User [addr=addr005,age=age5, id=id005, name=name005, sex=sex1]

    hash partition ---> User [addr=addr005,age=age5, id=id005, name=name005, sex=sex1]

    User [addr=addr006, age=age6, id=id006,name=name006, sex=sex0]

    encoder ---> User [addr=addr006,age=age6, id=id006, name=name006, sex=sex0]

    encoder ---> User [addr=addr006,age=age6, id=id006, name=name006, sex=sex0]

    hash partition ---> User [addr=addr006,age=age6, id=id006, name=name006, sex=sex0]

    User [addr=addr007, age=age7, id=id007,name=name007, sex=sex1]

    encoder ---> User [addr=addr007,age=age7, id=id007, name=name007, sex=sex1]

    encoder ---> User [addr=addr007,age=age7, id=id007, name=name007, sex=sex1]

    hash partition ---> User [addr=addr007,age=age7, id=id007, name=name007, sex=sex1]

    User [addr=addr008, age=age8, id=id008,name=name008, sex=sex0]

    encoder ---> User [addr=addr008,age=age8, id=id008, name=name008, sex=sex0]

    encoder ---> User [addr=addr008,age=age8, id=id008, name=name008, sex=sex0]

    hash partition ---> User [addr=addr008,age=age8, id=id008, name=name008, sex=sex0]

    User [addr=addr009, age=age9, id=id009,name=name009, sex=sex1]

    encoder ---> User [addr=addr009,age=age9, id=id009, name=name009, sex=sex1]

    encoder ---> User [addr=addr009,age=age9, id=id009, name=name009, sex=sex1]

    hash partition ---> User [addr=addr009,age=age9, id=id009, name=name009, sex=sex1]

    producer is successful .

    这里能够看到我们的UserProducer已经将User类的数据传送到Kafka了。如今就等ConsumerKafka中取出数据了

    # 执行 UserSimpleConsumer。以下是执行结果(Eclipse下执行)

    # partition 0的执行结果

    SLF4J: Failed to load class"org.slf4j.impl.StaticLoggerBinder".

    SLF4J: Defaulting to no-operation (NOP) loggerimplementation

    SLF4J: Seehttp://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

    log4j:WARN No appenders could be found for logger (kafka.network.BlockingChannel).

    log4j:WARN Please initialize the log4j system properly.

    0: User [addr=addr000, age=age0, id=id000,name=name000, sex=sex0]

    1: User [addr=addr002, age=age2, id=id002,name=name002, sex=sex0]

    2: User [addr=addr006, age=age6, id=id006,name=name006, sex=sex0]

    3: User [addr=addr009, age=age9, id=id009, name=name009,sex=sex1]

    0~3,一共4条记录

    # partition 1的执行结果

    SLF4J: Failed to load class"org.slf4j.impl.StaticLoggerBinder".

    SLF4J: Defaulting to no-operation (NOP) loggerimplementation

    SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinderfor further details.

    log4j:WARN No appenders could be found for logger(kafka.network.BlockingChannel).

    log4j:WARN Please initialize the log4j system properly.

    0: User [addr=addr001, age=age1, id=id001,name=name001, sex=sex1]

    1: User [addr=addr003, age=age3, id=id003,name=name003, sex=sex1]

    2: User [addr=addr004, age=age4, id=id004,name=name004, sex=sex0]

    3: User [addr=addr005, age=age5, id=id005,name=name005, sex=sex1]

    4: User [addr=addr007, age=age7, id=id007,name=name007, sex=sex1]

    5: User [addr=addr008, age=age8, id=id008, name=name008,sex=sex0]

    0~5,一共6条记录

    两个分区加起来刚好10条记录

    序列化跟反序列化都成功了,OK

    # 这里是源码

    # User.java

    package com.yting.cloud.kafka.entity;

     

    import java.io.Serializable;

     

    /**

     * User entity

     *

     * @Author 王扬庭

     * @Time 2014-07-18

     *

     */

    public class Userimplements Serializable{

        private static final longserialVersionUID= 6345666479504626985L;

        private String id;

        private String name;

        private String sex;

        private String age;

        private String addr;

     

        public User() {

        }

     

        public User(String id, String name, String sex, Stringage, String addr) {

           this.id = id;

           this.name = name;

           this.sex = sex;

           this.age = age;

           this.addr = addr;

        }

     

        public String getId() {

           return id;

        }

     

        public void setId(String id) {

           this.id = id;

        }

     

        public String getName() {

           return name;

        }

     

        public void setName(String name) {

           this.name = name;

        }

     

        public String getSex() {

           return sex;

        }

     

        public void setSex(String sex) {

           this.sex = sex;

        }

     

        public String getAge() {

           return age;

        }

     

        public void setAge(String age) {

           this.age = age;

        }

     

        public String getAddr() {

           return addr;

        }

     

        public void setAddr(String addr) {

           this.addr = addr;

        }

     

        @Override

        public String toString() {

           return "User [addr=" + addr + ",age=" + age + ", id=" + id + ", name="

                  + name + ", sex=" + sex + "]";

        }

       

    }

    # HashSimplePartitioner.java

    package com.yting.cloud.kafka.partition;

     

     

    import kafka.producer.Partitioner;

    import kafka.utils.VerifiableProperties;

     

    /**

     * Kafka官网给的案例SimplePartitioner,官网给的是0.8.0的版本号,跟0.8.1的版本号不一样,所以改了下。你懂的!

     *

     * @Author 王扬庭

     * @Time2014-07-18

     *

     */

    public class HashSimplePartitioner implementsPartitioner {

           publicHashSimplePartitioner(VerifiableProperties props) {

     

           }

     

           @Override

           publicint partition(Object key, int numPartitions) {

                  System.out.println("hashpartition ---> " + key);

                  returnkey.hashCode() % numPartitions;

           }

     

    }

    # UserEncoder.java

    package com.yting.cloud.kafka.encoder;

     

    import com.yting.cloud.kafka.entity.User;

    import com.yting.cloud.kafka.util.BeanUtils;

     

    import kafka.serializer.Encoder;

    import kafka.utils.VerifiableProperties;


     /**
     * UserEncoder
     * 
     * @Author 王扬庭
     * @Time 2014-07-18
     * 
     */

    public class UserEncoderimplementsEncoder<User>{

     

         publicUserEncoder(VerifiableProperties props) {

            

         }

     

        @Override

        public byte[] toBytes(User user) {

           System.out.println("encoder ---> " +user);

           return BeanUtils.object2Bytes(user);

        }

       

    }

    # UserProducer.java

    package com.yting.cloud.kafka.producer;

     

    import java.util.*;

     

    import com.yting.cloud.kafka.entity.User;

     

    import kafka.javaapi.producer.Producer;

    import kafka.producer.KeyedMessage;

    import kafka.producer.ProducerConfig;

     

    /**

     * Kafka官网给的案例 Producer,饿在Eclipse下本地连接server測试。所以改动了一些代码

     *

     * @Author 王扬庭

     * @Time 2014-07-18

     *

     */

    public class UserProducer {

        public static void main(String[]args) {

           long events = 10;

     

           Properties props = newProperties();

    //     props.put("metadata.broker.list","broker1:9092,broker2:9092");

           props.put("metadata.broker.list","rs229:9092"); // Eclipse下rs229在本地hosts也要配置。或者写成ip形式也能够

           props.put("serializer.class","com.yting.cloud.kafka.encoder.UserEncoder"); //须要改动

           props.put("partitioner.class","com.yting.cloud.kafka.partition.HashSimplePartitioner");

           props.put("zookeeper.connect","rs229:2181,rs227:2181,rs226:2181,rs198:2181,rs197:2181/kafka"); //须要改动

           props.put("request.required.acks","1");

     

           ProducerConfig config = newProducerConfig(props);

     

           Producer<User, User>producer = new Producer<User, User>(config);

     

           for (long nEvents = 0; nEvents< events; nEvents++) {

               User msg = newUser("id00"+nEvents, "name00"+nEvents, "sex"+nEvents%2,"age"+nEvents, "addr00"+nEvents);

               System.out.println(msg);

               KeyedMessage<User,User> data = new KeyedMessage<User, User>("test-user-001",msg, msg);

               producer.send(data);

           }

           producer.close();

          

           System.out.println("produceris successful .");

        }

    }

    # UserSimpleConsumer.java

    package com.yting.cloud.kafka.consumer;

     

    import kafka.api.FetchRequest;

    import kafka.api.FetchRequestBuilder;

    import kafka.api.PartitionOffsetRequestInfo;

    import kafka.common.ErrorMapping;

    import kafka.common.TopicAndPartition;

    import kafka.javaapi.*;

    import kafka.javaapi.consumer.SimpleConsumer;

    import kafka.message.MessageAndOffset;

     

    import java.nio.ByteBuffer;

    import java.util.ArrayList;

    import java.util.Collections;

    import java.util.HashMap;

    import java.util.List;

    import java.util.Map;

     

    import com.yting.cloud.kafka.entity.User;

    import com.yting.cloud.kafka.util.BeanUtils;

     

    /**

     * Kafka官网给的案例 SimpleConsumer。饿在Eclipse本地连接server測试,所以改动了一些代码

     *

     * @Author 王扬庭

     * @Time 2014-07-18

     *

     */

    public class UserSimpleConsumer {

        public static void main(Stringargs[]) {

           UserSimpleConsumer example =new UserSimpleConsumer();

           long maxReads = 100;

           String topic ="test-user-001";

           int partition = 0; //

    //     int partition = 1; //

           List<String> seeds = newArrayList<String>();

           seeds.add("rs229");

           seeds.add("rs227");

           seeds.add("rs226");

           seeds.add("rs198");

           seeds.add("rs197");

           int port =Integer.parseInt("9092");

           try {

               example.run(maxReads,topic, partition, seeds, port);

           } catch (Exception e) {

               System.out.println("Oops:"+ e);

               e.printStackTrace();

           }

        }

     

        private List<String>m_replicaBrokers = new ArrayList<String>();

     

        public UserSimpleConsumer() {

           m_replicaBrokers = newArrayList<String>();

        }

     

        public void run(long a_maxReads,String a_topic, int a_partition, List<String> a_seedBrokers, int a_port)throws Exception {

           // find the meta data aboutthe topic and partition we are interested in

           //

           PartitionMetadata metadata =findLeader(a_seedBrokers, a_port, a_topic,

                  a_partition);

           if (metadata == null) {

               System.out

                      .println("Can'tfind metadata for Topic and Partition. Exiting");

               return;

           }

           if (metadata.leader() == null){

               System.out

                      .println("Can'tfind Leader for Topic and Partition. Exiting");

               return;

           }

           String leadBroker =metadata.leader().host();

           String clientName ="Client_" + a_topic + "_" + a_partition;

     

           SimpleConsumer consumer = newSimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);

           long readOffset =getLastOffset(consumer, a_topic, a_partition,

                  kafka.api.OffsetRequest.EarliestTime(),clientName);

     

           int numErrors = 0;

           while (a_maxReads > 0) {

               if (consumer == null) {

                  consumer = newSimpleConsumer(leadBroker, a_port, 100000,

                         64 * 1024,clientName);

               }

               FetchRequest req = newFetchRequestBuilder().clientId(clientName)

                      .addFetch(a_topic,a_partition, readOffset, 100000) // Note: this fetchSize of 100000 might needto be increased if large batches are written to Kafka

                      .build();

               FetchResponsefetchResponse = consumer.fetch(req);

     

               if(fetchResponse.hasError()) {

                  numErrors++;

                  // Something wentwrong!

                  short code =fetchResponse.errorCode(a_topic, a_partition);

                  System.out.println("Errorfetching data from the Broker:"

                         + leadBroker +" Reason: " + code);

                  if (numErrors > 5)

                      break;

                  if (code == ErrorMapping.OffsetOutOfRangeCode()) {

                      // We asked for aninvalid offset. For simple case ask for

                      // the last elementto reset

                      readOffset =getLastOffset(consumer, a_topic, a_partition,

                             kafka.api.OffsetRequest.LatestTime(),clientName);

                      continue;

                  }

                  consumer.close();

                  consumer = null;

                  leadBroker =findNewLeader(leadBroker, a_topic, a_partition,

                         a_port);

                  continue;

               }

               numErrors = 0;

     

               long numRead = 0;

               for (MessageAndOffsetmessageAndOffset : fetchResponse.messageSet(

                      a_topic,a_partition)) {

                  long currentOffset =messageAndOffset.offset();

                  if (currentOffset <readOffset) {

                      System.out.println("Foundan old offset: " + currentOffset

                             + " Expecting: " + readOffset);

                      continue;

                  }

                  readOffset =messageAndOffset.nextOffset();

                  ByteBuffer payload =messageAndOffset.message().payload();

     

                  byte[] bytes = newbyte[payload.limit()];

                  payload.get(bytes);

                  // ===这里就是反序列化=======================================================

                  User user = (User)BeanUtils.bytes2Object(bytes);

                  System.out.println(String.valueOf(messageAndOffset.offset())+ ": " + user);

                  //=========================================================================

                  numRead++;

                  a_maxReads--;

               }

     

               if (numRead == 0) {

                  try {

                      Thread.sleep(1000);

                  } catch(InterruptedException ie) {

                  }

               }

           }

           if (consumer != null)

               consumer.close();

        }

     

        public static longgetLastOffset(SimpleConsumer consumer, String topic,

               int partition, longwhichTime, String clientName) {

           TopicAndPartitiontopicAndPartition = new TopicAndPartition(topic,

                  partition);

           Map<TopicAndPartition,PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition,PartitionOffsetRequestInfo>();

           requestInfo.put(topicAndPartition,new PartitionOffsetRequestInfo(

                  whichTime, 1));

           kafka.javaapi.OffsetRequestrequest = new kafka.javaapi.OffsetRequest(

                  requestInfo,kafka.api.OffsetRequest.CurrentVersion(),

                  clientName);

           OffsetResponse response =consumer.getOffsetsBefore(request);

     

           if (response.hasError()) {

               System.out

                      .println("Errorfetching data Offset Data the Broker. Reason: "

                             + response.errorCode(topic,partition));

               return 0;

           }

           long[] offsets =response.offsets(topic, partition);

           return offsets[0];

        }

     

        private StringfindNewLeader(String a_oldLeader, String a_topic,

               int a_partition, inta_port) throws Exception {

           for (int i = 0; i < 3; i++){

               boolean goToSleep = false;

               PartitionMetadata metadata= findLeader(m_replicaBrokers, a_port,

                      a_topic,a_partition);

               if (metadata == null) {

                  goToSleep = true;

               } else if(metadata.leader() == null) {

                  goToSleep = true;

               } else if(a_oldLeader.equalsIgnoreCase(metadata.leader().host())

                      && i == 0){

                  // first time throughif the leader hasn't changed give

                  // ZooKeeper a secondto recover

                  // second time, assumethe broker did recover before failover,

                  // or it was anon-Broker issue

                  //

                  goToSleep = true;

               } else {

                  returnmetadata.leader().host();

               }

               if (goToSleep) {

                  try {

                      Thread.sleep(1000);

                  } catch(InterruptedException ie) {

                  }

               }

           }

           System.out

                  .println("Unableto find new leader after Broker failure. Exiting");

           throw new Exception(

                  "Unable to findnew leader after Broker failure. Exiting");

        }

     

        private PartitionMetadatafindLeader(List<String> a_seedBrokers,

               int a_port, Stringa_topic, int a_partition) {

           PartitionMetadatareturnMetaData = null;

           loop: for (String seed :a_seedBrokers) {

               SimpleConsumer consumer =null;

               try {

                  consumer = newSimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");

                  List<String>topics = Collections.singletonList(a_topic);

                  TopicMetadataRequestreq = new TopicMetadataRequest(topics);

                  kafka.javaapi.TopicMetadataResponseresp = consumer.send(req);

     

                  List<TopicMetadata>metaData = resp.topicsMetadata();

                  for (TopicMetadata item: metaData) {

                      for(PartitionMetadata part : item.partitionsMetadata()) {

                         if(part.partitionId() == a_partition) {

                             returnMetaData= part;

                             break loop;

                         }

                      }

                  }

               } catch (Exception e) {

                  System.out.println("Errorcommunicating with Broker [" + seed

                         + "] tofind Leader for [" + a_topic + ", "

                         + a_partition +"] Reason: " + e);

               } finally {

                  if (consumer != null)

                      consumer.close();

               }

           }

           if (returnMetaData != null) {

               m_replicaBrokers.clear();

               for (kafka.cluster.Brokerreplica : returnMetaData.replicas()) {

                  m_replicaBrokers.add(replica.host());

               }

           }

           return returnMetaData;

        }

    }

    # 结束感言

    搞完了最终 ,整理这东西真浪费时间。只是要是你遇到了这个问题,能帮助你就好,认为好的话就帮忙顶一下吧,反正又不会怀孕 、、、

    本博文中用到的全部project代码,jar包什么的都已经上传到群214293307共享中,须要的话自己下载研究了。

    本博文《_00023 Kafka 诡异操作_001自己定义Encoder实现Class级别的数据传送以及解析》中的Eclipseproject代码下载地址 http://download.csdn.net/detail/u012185296/7648993

    # Time2014-07-18 11:08:22


    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    工作之经验之谈
    周记 2015.05.16
    NIO 02 (转)
    NIO 01 (转)
    周记 2015.05.09
    周记 2015.05.04
    JVM 内存知识总结
    Git内部原理(1)
    c/c++[001]:start
    CNN Mini-Fashion数据集以及Pytorch初体验
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/4823951.html
Copyright © 2011-2022 走看看