zoukankan      html  css  js  c++  java
  • 数据结构之二叉树

    二叉树

    • 实现一个二叉查找树,并且支持插入、删除、查找操作
    • 实现查找二叉查找树中某个节点的后继、前驱节点
    • 实现二叉树前、中、后序以及按层遍历

    二叉查找树的特性,其任一节点,该节点的左子树上的所有值,都比该节点小,该节点的右子树上的所有值,都比该节点大。

        查找操作,主要分以下几种情况

            如果查找value跟tree->value相同,则返回节点
            如果查找value比tree->value大,则向tree的右子树继续查找
            如果查找value比tree->value小,则向tree的左子树继续查找

        插入元素,主要分以下几种情况

            如果插入元素和tree->value相同,则不操作
            如果插入元素比tree->value大,
            (1). 如果右孩子为空,则插入节点,否则继续向右递归插入
            如果插入元素比tree->value小,
            (1). 如果左孩子为空,则插入节点,否则继续向左递归插入

        删除操作,主要分以下几种情况

            如果删除节点比tree->value要小,则继续递归查找左子树
            如果删除节点比tree->value要大,则继续递归查找右子树
            如果删除节点和tree->value相同
            (1). 如果该节点只有左孩子,则返回指向该左孩子的指针,并删除该节点
            (2). 如果该节点只有右孩子,则返回指向该右孩子的指针,并删除该节点
            (3). 如果没有孩子,直接删除该节点
            (4). 如果有左右孩子,那么用右子树的最小节点替代该节点,然后再递归删除右子树的最小节点
    #ifndef __BINARY_SEARCH_TREE_H__
    #define __BINARY_SEARCH_TREE_H__


    typedef int ElementType;

    typedef struct BS_TREE_T
    {
        ElementType value;
        struct BS_TREE_T * lChild;
        struct BS_TREE_T * rChild;
    }BS_TREE;

    typedef struct BS_TREE_T TNode;

    extern void binary_search_tree_main(void);

    #endif

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include "binary_search_tree.h"
    #include "tree_visual_create.h"


    BS_TREE * binary_search_tree_create(void)
    {
        char ch;
        BS_TREE *tree;

        scanf("%c",&ch);    

        if('#' == ch)
        {
            tree = NULL;
        }
        else
        {
            tree = (BS_TREE *)malloc(sizeof(BS_TREE));
            memset(tree, 0, sizeof(BS_TREE));
            tree->value = ch - '0';

            tree->lChild = binary_search_tree_create();
            tree->rChild = binary_search_tree_create();
        }

        return tree;
    }

    TNode * binary_search_tree_find(BS_TREE * tree, ElementType value)
    {
        TNode * node = NULL;

        if(tree)   
        {
            //printf("Now the node value is %d ", tree->value);
            if(tree->value == value)
                return tree;
            else if(tree->value > value)
                node = binary_search_tree_find(tree->lChild, value);
            else if(tree->value < value)
                node = binary_search_tree_find(tree->rChild, value);            
        }

        return node;
    }

    TNode * binary_search_tree_find_min(BS_TREE * tree)
    {
        TNode * node = NULL;

        if(tree)
        {
            if(tree->lChild)
            {
                node = binary_search_tree_find_min(tree->lChild);
            }
            else
                node = tree;
        }

        return node;
    }

    TNode * binary_search_tree_find_max(BS_TREE * tree)
    {
        TNode * node = NULL;

        if(tree)
        {
            if(tree->rChild)
            {
                node = binary_search_tree_find_max(tree->rChild);
            }
            else
                node = tree;
        }

        return node;
    }

    void binary_search_tree_insert(BS_TREE * tree, ElementType value)
    {
        if(tree)
        {
            if(tree->value == value)
            {
                printf("Ingore it, It's the same vlaue. ");
            }
            else if(tree->value > value)
            {
                if(NULL == tree->lChild)
                {
                    TNode * node = (TNode *)malloc(sizeof(TNode));
                    memset(node, 0, sizeof(TNode));
                    node->value = value;

                    tree->lChild = node;
                }
                else
                    binary_search_tree_insert(tree->lChild, value);
            }
            else if(tree->value < value)
            {
                if(NULL == tree->rChild)
                {
                    TNode * node = (TNode *)malloc(sizeof(TNode));
                    memset(node, 0, sizeof(TNode));
                    node->value = value;

                    tree->rChild = node;
                }
                else
                    binary_search_tree_insert(tree->rChild, value);
            }
        }
    }

    BS_TREE * binary_search_tree_delete(BS_TREE * tree, ElementType value)
    {
        BS_TREE * temp = NULL;

        if(NULL == tree)
        {
            printf("Not found the element ");
        }
        else if(value > tree->value)        /* Go Right */
        {
            tree->rChild = binary_search_tree_delete(tree->rChild, value);
        }
        else if(value < tree->value)       /* Go Left */
        {
            tree->lChild = binary_search_tree_delete(tree->lChild, value);
        }
        else if(tree->lChild && tree->rChild)       /* Two Children */
        {
            temp = binary_search_tree_find_min(tree->rChild);

            tree->value = temp->value;
            tree->rChild = binary_search_tree_delete(tree->rChild, tree->value);
        }
        else                /* one or zero Children */
        {
            temp = tree;
            if(NULL == tree->lChild)
            {
                tree = tree->rChild;
            }
            else if(NULL == tree->rChild)
            {
                tree = tree->lChild;
            }

            free(temp);
        }

        return tree;
    }

    void binary_search_tree_preorder_traverse(BS_TREE * tree)
    {
        if(tree)
        {
            printf("%d  ", tree->value);
            binary_search_tree_preorder_traverse(tree->lChild);
            binary_search_tree_preorder_traverse(tree->rChild);
        }
    }

    void binary_search_tree_inorder_traverse(BS_TREE * tree)
    {
        if(tree)
        {
            binary_search_tree_inorder_traverse(tree->lChild);
            printf("%d  ", tree->value);
            binary_search_tree_inorder_traverse(tree->rChild);
        }
    }

    void binary_search_tree_postorder_traverse(BS_TREE * tree)
    {
        if(tree)
        {
            binary_search_tree_postorder_traverse(tree->lChild);
            binary_search_tree_postorder_traverse(tree->rChild);
            printf("%d  ", tree->value);
        }
    }

    void binary_search_tree_destroy(BS_TREE * tree)
    {
        if(tree)
        {
            binary_search_tree_destroy(tree->lChild);
            binary_search_tree_destroy(tree->rChild);

            free(tree);
            tree = NULL;
        }
    }

    void binary_search_tree_main(void)
    {
        BS_TREE * tree = binary_search_tree_create();

        tree_visual_create(tree, "tree.dot");

        TNode * node;
        node = binary_search_tree_find(tree, 7);
        if(node != NULL)
        {
            printf("Find the node value : %d ", node->value);
        }

        node = binary_search_tree_find_min(tree);
        if(node != NULL)
        {
            printf("Find the Min node value : %d ", node->value);
        }

        node = binary_search_tree_find_max(tree);
        if(node != NULL)
        {
            printf("Find the Max node value : %d ", node->value);
        }

        binary_search_tree_insert(tree, 3);    
        tree_visual_create(tree, "tree2.dot");

        printf(" Preorder traverse : ");
        binary_search_tree_preorder_traverse(tree);

        printf(" Inorder traverse : ");
        binary_search_tree_inorder_traverse(tree);

        printf(" Postorder traverse : ");
        binary_search_tree_postorder_traverse(tree);
        printf(" ");

        tree = binary_search_tree_delete(tree, 4);
        tree_visual_create(tree, "tree3.dot");

        binary_search_tree_destroy(tree);   
    }

  • 相关阅读:
    Manjaro 更新vim插件或者系统后 YCM失效
    UVA 10635 Prince and Princess
    HDU 4489 The King's Ups and Downs
    HDU 1542 矩形面积并
    POJ 2528 Mayor's poster
    读 CSI讲义 费马小定理
    JavaWeb——Servlet开发2
    JavaWeb——Servlet开发1
    LeetCode——264. Ugly Number II
    LeetCode——540. Single Element in a Sorted Array
  • 原文地址:https://www.cnblogs.com/hrnn/p/13347258.html
Copyright © 2011-2022 走看看