二叉树
- 实现一个二叉查找树,并且支持插入、删除、查找操作
- 实现查找二叉查找树中某个节点的后继、前驱节点
- 实现二叉树前、中、后序以及按层遍历
二叉查找树的特性,其任一节点,该节点的左子树上的所有值,都比该节点小,该节点的右子树上的所有值,都比该节点大。
查找操作,主要分以下几种情况
如果查找value跟tree->value相同,则返回节点
如果查找value比tree->value大,则向tree的右子树继续查找
如果查找value比tree->value小,则向tree的左子树继续查找
插入元素,主要分以下几种情况
如果插入元素和tree->value相同,则不操作
如果插入元素比tree->value大,
(1). 如果右孩子为空,则插入节点,否则继续向右递归插入
如果插入元素比tree->value小,
(1). 如果左孩子为空,则插入节点,否则继续向左递归插入
删除操作,主要分以下几种情况
如果删除节点比tree->value要小,则继续递归查找左子树
如果删除节点比tree->value要大,则继续递归查找右子树
如果删除节点和tree->value相同
(1). 如果该节点只有左孩子,则返回指向该左孩子的指针,并删除该节点
(2). 如果该节点只有右孩子,则返回指向该右孩子的指针,并删除该节点
(3). 如果没有孩子,直接删除该节点
(4). 如果有左右孩子,那么用右子树的最小节点替代该节点,然后再递归删除右子树的最小节点
#ifndef __BINARY_SEARCH_TREE_H__
#define __BINARY_SEARCH_TREE_H__
typedef int ElementType;
typedef struct BS_TREE_T
{
ElementType value;
struct BS_TREE_T * lChild;
struct BS_TREE_T * rChild;
}BS_TREE;
typedef struct BS_TREE_T TNode;
extern void binary_search_tree_main(void);
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "binary_search_tree.h"
#include "tree_visual_create.h"
BS_TREE * binary_search_tree_create(void)
{
char ch;
BS_TREE *tree;
scanf("%c",&ch);
if('#' == ch)
{
tree = NULL;
}
else
{
tree = (BS_TREE *)malloc(sizeof(BS_TREE));
memset(tree, 0, sizeof(BS_TREE));
tree->value = ch - '0';
tree->lChild = binary_search_tree_create();
tree->rChild = binary_search_tree_create();
}
return tree;
}
TNode * binary_search_tree_find(BS_TREE * tree, ElementType value)
{
TNode * node = NULL;
if(tree)
{
//printf("Now the node value is %d
", tree->value);
if(tree->value == value)
return tree;
else if(tree->value > value)
node = binary_search_tree_find(tree->lChild, value);
else if(tree->value < value)
node = binary_search_tree_find(tree->rChild, value);
}
return node;
}
TNode * binary_search_tree_find_min(BS_TREE * tree)
{
TNode * node = NULL;
if(tree)
{
if(tree->lChild)
{
node = binary_search_tree_find_min(tree->lChild);
}
else
node = tree;
}
return node;
}
TNode * binary_search_tree_find_max(BS_TREE * tree)
{
TNode * node = NULL;
if(tree)
{
if(tree->rChild)
{
node = binary_search_tree_find_max(tree->rChild);
}
else
node = tree;
}
return node;
}
void binary_search_tree_insert(BS_TREE * tree, ElementType value)
{
if(tree)
{
if(tree->value == value)
{
printf("Ingore it, It's the same vlaue.
");
}
else if(tree->value > value)
{
if(NULL == tree->lChild)
{
TNode * node = (TNode *)malloc(sizeof(TNode));
memset(node, 0, sizeof(TNode));
node->value = value;
tree->lChild = node;
}
else
binary_search_tree_insert(tree->lChild, value);
}
else if(tree->value < value)
{
if(NULL == tree->rChild)
{
TNode * node = (TNode *)malloc(sizeof(TNode));
memset(node, 0, sizeof(TNode));
node->value = value;
tree->rChild = node;
}
else
binary_search_tree_insert(tree->rChild, value);
}
}
}
BS_TREE * binary_search_tree_delete(BS_TREE * tree, ElementType value)
{
BS_TREE * temp = NULL;
if(NULL == tree)
{
printf("Not found the element
");
}
else if(value > tree->value) /* Go Right */
{
tree->rChild = binary_search_tree_delete(tree->rChild, value);
}
else if(value < tree->value) /* Go Left */
{
tree->lChild = binary_search_tree_delete(tree->lChild, value);
}
else if(tree->lChild && tree->rChild) /* Two Children */
{
temp = binary_search_tree_find_min(tree->rChild);
tree->value = temp->value;
tree->rChild = binary_search_tree_delete(tree->rChild, tree->value);
}
else /* one or zero Children */
{
temp = tree;
if(NULL == tree->lChild)
{
tree = tree->rChild;
}
else if(NULL == tree->rChild)
{
tree = tree->lChild;
}
free(temp);
}
return tree;
}
void binary_search_tree_preorder_traverse(BS_TREE * tree)
{
if(tree)
{
printf("%d ", tree->value);
binary_search_tree_preorder_traverse(tree->lChild);
binary_search_tree_preorder_traverse(tree->rChild);
}
}
void binary_search_tree_inorder_traverse(BS_TREE * tree)
{
if(tree)
{
binary_search_tree_inorder_traverse(tree->lChild);
printf("%d ", tree->value);
binary_search_tree_inorder_traverse(tree->rChild);
}
}
void binary_search_tree_postorder_traverse(BS_TREE * tree)
{
if(tree)
{
binary_search_tree_postorder_traverse(tree->lChild);
binary_search_tree_postorder_traverse(tree->rChild);
printf("%d ", tree->value);
}
}
void binary_search_tree_destroy(BS_TREE * tree)
{
if(tree)
{
binary_search_tree_destroy(tree->lChild);
binary_search_tree_destroy(tree->rChild);
free(tree);
tree = NULL;
}
}
void binary_search_tree_main(void)
{
BS_TREE * tree = binary_search_tree_create();
tree_visual_create(tree, "tree.dot");
TNode * node;
node = binary_search_tree_find(tree, 7);
if(node != NULL)
{
printf("Find the node value : %d
", node->value);
}
node = binary_search_tree_find_min(tree);
if(node != NULL)
{
printf("Find the Min node value : %d
", node->value);
}
node = binary_search_tree_find_max(tree);
if(node != NULL)
{
printf("Find the Max node value : %d
", node->value);
}
binary_search_tree_insert(tree, 3);
tree_visual_create(tree, "tree2.dot");
printf("
Preorder traverse : ");
binary_search_tree_preorder_traverse(tree);
printf("
Inorder traverse : ");
binary_search_tree_inorder_traverse(tree);
printf("
Postorder traverse : ");
binary_search_tree_postorder_traverse(tree);
printf("
");
tree = binary_search_tree_delete(tree, 4);
tree_visual_create(tree, "tree3.dot");
binary_search_tree_destroy(tree);
}