题目描述
给出一个有序数组,请在数组中找出目标值的起始位置和结束位置
你的算法的时间复杂度应该在O(log n)之内
如果数组中不存在目标,返回[-1, -1].
例如:
给出的数组是[5, 7, 7, 8, 8, 10],目标值是8,
返回[3, 4].
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return[-1, -1].
For example,
Given[5, 7, 7, 8, 8, 10]and target value 8,
return[3, 4].
示例1
输出
复制[3,4]
class Solution {
public:
/**
*
* @param A int整型一维数组
* @param n int A数组长度
* @param target int整型
* @return int整型vector
*/
vector<int> searchRange(int* A, int n, int target) {
// write code here
vector< int> res(2,-1);
if (A==nullptr || n<=0)
return res;
int low=lower_bound(A, A+n, target)-A;
if (low==n || A[low]!=target)
return res;
else res[0]=low;
int high=upper_bound(A, A+n,target)-A-1;
res[1]=high;
return res;
}
};
class Solution {
public:
/**
*
* @param A int整型一维数组
* @param n int A数组长度
* @param target int整型
* @return int整型vector
*/
vector<int> searchRange(int* A, int n, int target) {
// write code here
vector<int> res(2,-1);
if (A==nullptr || n<=0)
return res;
int low=0,high=n-1;
while (low<=high)
{
int middle =(high+low)>>1;
if (A[middle]<target)
low=middle+1;
else
high=middle-1;
}
int low2=0,high2=n-1;
while (low2<=high2)
{
int middle2=(high2+low2)>>1;
if (A[middle2]<=target)
low2=middle2+1;
else
high2=middle2-1;
}
if (low<=high2){
res[0]=low;
res[1]=high2;
}
return res;
}
};