zoukankan      html  css  js  c++  java
  • Codeforces Round #344 (Div. 2) A

    A. Interview
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Blake is a CEO of a large company called "Blake Technologies". He loves his company very much and he thinks that his company should be the best. That is why every candidate needs to pass through the interview that consists of the following problem.

    We define function f(x, l, r) as a bitwise OR of integers xl, xl + 1, ..., xr, where xi is the i-th element of the array x. You are given two arrays a and b of length n. You need to determine the maximum value of sum f(a, l, r) + f(b, l, r) among all possible 1 ≤ l ≤ r ≤ n.

    Input

    The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the length of the arrays.

    The second line contains n integers ai (0 ≤ ai ≤ 109).

    The third line contains n integers bi (0 ≤ bi ≤ 109).

    Output

    Print a single integer — the maximum value of sum f(a, l, r) + f(b, l, r) among all possible 1 ≤ l ≤ r ≤ n.

    Examples
    Input
    5
    1 2 4 3 2
    2 3 3 12 1
    Output
    22
    Input
    10
    13 2 7 11 8 4 9 8 5 1
    5 7 18 9 2 3 0 11 8 6
    Output
    46
    Note

    Bitwise OR of two non-negative integers a and b is the number c = a OR b, such that each of its digits in binary notation is 1 if and only if at least one of a or b have 1 in the corresponding position in binary notation.

    In the first sample, one of the optimal answers is l = 2 and r = 4, because f(a, 2, 4) + f(b, 2, 4) = (2 OR 4 OR 3) + (3 OR 3 OR 12) = 7 + 15 = 22. Other ways to get maximum value is to choose l = 1 and r = 4, l = 1 and r = 5, l = 2 and r = 4, l = 2 and r = 5, l = 3 and r = 4, or l = 3 and r = 5.

    In the second sample, the maximum value is obtained for l = 1 and r = 9.

    题解: max(f(a,l,r)+f((b,l,r))  f() 为求 l-->r的按位或的值

    马上codeforces  上分

     1 #include<bits/stdc++.h>
     2 using namespace  std;
     3 int a[1002][1002];
     4 int b[1002][1002];
     5 int exm1[1002],exm2[1002];
     6 int main()
     7 {
     8     int n;
     9     int sum1=0,sum2=0,maxn=0;;
    10     scanf("%d",&n);
    11     for(int i=1; i<=n; i++)
    12     {
    13         scanf("%d",&exm1[i]);
    14     }
    15     for(int i=1; i<=n; i++)
    16     {
    17         scanf("%d",&exm2[i]);
    18     }
    19     for(int i=1; i<=n; i++)
    20     {
    21         sum1=exm1[i];
    22         a[i][i]=sum1;
    23         for(int j=i+1; j<=n; j++)
    24             {
    25                 a[i][j]=sum1|exm1[j];
    26                 sum1=a[i][j];
    27             }
    28     }
    29     for(int i=1; i<=n; i++)
    30     {
    31         sum2=exm2[i];
    32         b[i][i]=sum2;
    33         if(b[i][i]+a[i][i]>maxn)
    34                     maxn=b[i][i]+a[i][i];
    35         for(int j=i+1; j<=n; j++)
    36            {
    37                 b[i][j]=sum2|exm2[j];
    38                 sum2=b[i][j];
    39                 if(b[i][j]+a[i][j]>maxn)
    40                     maxn=b[i][j]+a[i][j];
    41            }
    42     }
    43     printf("%d
    ",maxn);
    44     return 0;
    45 }
    View Code
  • 相关阅读:
    Golang gRPC 入门
    ProtoBuf编解码
    Proto3语法入门
    Golang RPC入门
    Windows用mstsc(远程桌面)远程Ubuntu 12.04时无法显示Ubuntu桌面解决办法
    ABAPSM30配置TCODE
    eclipselog4j.properties配置
    Hadoop—配置3个副本,但是实际只有1个副本。
    Hadoop—org.apache.hadoop.io.nativeio.NativeIO$Windows.access0
    Jmeter BeanShell使用场景
  • 原文地址:https://www.cnblogs.com/hsd-/p/5251055.html
Copyright © 2011-2022 走看看