zoukankan      html  css  js  c++  java
  • HDU 5656

    CA Loves GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 809    Accepted Submission(s): 283


    Problem Description
    CA is a fine comrade who loves the party and people; inevitably she loves GCD (greatest common divisor) too.
    Now, there are N different numbers. Each time, CA will select several numbers (at least one), and find the GCD of these numbers. In order to have fun, CA will try every selection. After that, she wants to know the sum of all GCDs.
    If and only if there is a number exists in a selection, but does not exist in another one, we think these two selections are different from each other.
     
    Input
    First line contains T denoting the number of testcases.
    T testcases follow. Each testcase contains a integer in the first time, denoting N , the number of the numbers CA have. The second line is N numbers.
    We guarantee that all numbers in the test are in the range [1,1000].
    1T50
     
    Output
    T lines, each line prints the sum of GCDs mod 100000007 .
     
    Sample Input
    2
    2
    2 4
    3
    1 2 3
     
    Sample Output
    8
    10
     
    Source
     
    题意:给你 n 个数 求着n个数不同组合情况下的gcd之和
    题解:dp[i][j] 代表 前i个数中的组合 使得gcd为j的个数
    重在理解下面几句代码
    int v=a[j+1];
    dp[j+1][k]=(dp[j+1][k]+dp[j][k])%mod; // 前j+1个 gcd 组合为k的包括 dp[j][k]
     if(dp[j][k])
    {
     int gg=gcd(k,v); 
     dp[j+1][gg]=(dp[j+1][gg]+dp[j][k])%mod;//若前j个gcd为k然后增加第j+1个a[j+1]得到gg  
                                                                    //可知道dp[j+1][gg] 包括dp[j][k](前j个gcd为k)
    }
     
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<algorithm>
     5 #include<map>
     6 #include<queue>
     7 #include<stack>
     8 #include<set>
     9 #define ll __int64
    10 #define mod 100000007
    11 using namespace std;
    12 ll dp[1005][1005];
    13 int  a[1005];
    14 int maxn;
    15 int t,n;
    16 ll ans=0;
    17 ll gcd(ll aa,ll bb)// 求解gcd
    18 {
    19     ll exm;
    20     if(aa<bb)
    21     {
    22         exm=aa;
    23         aa=bb;
    24         bb=exm;
    25     }
    26     if(bb==0)
    27         return aa;
    28     gcd(bb,aa%bb);
    29 }
    30 int main()
    31 {
    32     while(scanf("%d",&t)!=EOF)
    33     {
    34         for(int i=1; i<=t; i++)
    35     {
    36         ans=0;
    37         memset(dp,0,sizeof(dp));
    38         memset(a,0,sizeof(a));
    39         scanf("%d",&n);
    40         maxn=-1;
    41         for(int j=1; j<=n; j++)
    42         {
    43             scanf("%d",&a[j]);
    44             if(a[j]>maxn)
    45                 maxn=a[j];
    46             dp[j][a[j]]=1;//初始化 只取第j个a[j]
    47         }
    48         for(int j=1; j<=n; j++)
    49         {
    50             int v=a[j+1];
    51             for(int k=1; k<=maxn; k++)
    52             {
    53                 dp[j+1][k]=(dp[j+1][k]+dp[j][k])%mod;
    54                 if(dp[j][k])
    55                 {int gg=gcd(k,v);
    56                     dp[j+1][gg]=(dp[j+1][gg]+dp[j][k])%mod;}
    57             }
    58         }
    59         for(int j=1; j<=maxn; j++)
    60             ans=(ans+j*dp[n][j])%mod;
    61         printf("%I64d
    ",ans);
    62     }
    63     }
    64     return 0;
    65 }
  • 相关阅读:
    金融资产的票面利率与实际利率
    对于确定承诺的外汇风险,既属于公允价值套期,又属于现金流量套期,怎么区分呢?
    套期工具(公允价值套期与现金流量套期)
    R语言使用 LOWESS技术图分析逻辑回归中的函数形式
    R语言ROC曲线下的面积
    R语言Poisson回归的拟合优度检验
    R语言在逻辑回归中求R square R方
    R平方/相关性取决于预测变量的方差
    stata具有异方差误差的区间回归
    R语言用于线性回归的稳健方差估计
  • 原文地址:https://www.cnblogs.com/hsd-/p/5350538.html
Copyright © 2011-2022 走看看