zoukankan      html  css  js  c++  java
  • HDU 5656

    CA Loves GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 809    Accepted Submission(s): 283


    Problem Description
    CA is a fine comrade who loves the party and people; inevitably she loves GCD (greatest common divisor) too.
    Now, there are N different numbers. Each time, CA will select several numbers (at least one), and find the GCD of these numbers. In order to have fun, CA will try every selection. After that, she wants to know the sum of all GCDs.
    If and only if there is a number exists in a selection, but does not exist in another one, we think these two selections are different from each other.
     
    Input
    First line contains T denoting the number of testcases.
    T testcases follow. Each testcase contains a integer in the first time, denoting N , the number of the numbers CA have. The second line is N numbers.
    We guarantee that all numbers in the test are in the range [1,1000].
    1T50
     
    Output
    T lines, each line prints the sum of GCDs mod 100000007 .
     
    Sample Input
    2
    2
    2 4
    3
    1 2 3
     
    Sample Output
    8
    10
     
    Source
     
    题意:给你 n 个数 求着n个数不同组合情况下的gcd之和
    题解:dp[i][j] 代表 前i个数中的组合 使得gcd为j的个数
    重在理解下面几句代码
    int v=a[j+1];
    dp[j+1][k]=(dp[j+1][k]+dp[j][k])%mod; // 前j+1个 gcd 组合为k的包括 dp[j][k]
     if(dp[j][k])
    {
     int gg=gcd(k,v); 
     dp[j+1][gg]=(dp[j+1][gg]+dp[j][k])%mod;//若前j个gcd为k然后增加第j+1个a[j+1]得到gg  
                                                                    //可知道dp[j+1][gg] 包括dp[j][k](前j个gcd为k)
    }
     
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<algorithm>
     5 #include<map>
     6 #include<queue>
     7 #include<stack>
     8 #include<set>
     9 #define ll __int64
    10 #define mod 100000007
    11 using namespace std;
    12 ll dp[1005][1005];
    13 int  a[1005];
    14 int maxn;
    15 int t,n;
    16 ll ans=0;
    17 ll gcd(ll aa,ll bb)// 求解gcd
    18 {
    19     ll exm;
    20     if(aa<bb)
    21     {
    22         exm=aa;
    23         aa=bb;
    24         bb=exm;
    25     }
    26     if(bb==0)
    27         return aa;
    28     gcd(bb,aa%bb);
    29 }
    30 int main()
    31 {
    32     while(scanf("%d",&t)!=EOF)
    33     {
    34         for(int i=1; i<=t; i++)
    35     {
    36         ans=0;
    37         memset(dp,0,sizeof(dp));
    38         memset(a,0,sizeof(a));
    39         scanf("%d",&n);
    40         maxn=-1;
    41         for(int j=1; j<=n; j++)
    42         {
    43             scanf("%d",&a[j]);
    44             if(a[j]>maxn)
    45                 maxn=a[j];
    46             dp[j][a[j]]=1;//初始化 只取第j个a[j]
    47         }
    48         for(int j=1; j<=n; j++)
    49         {
    50             int v=a[j+1];
    51             for(int k=1; k<=maxn; k++)
    52             {
    53                 dp[j+1][k]=(dp[j+1][k]+dp[j][k])%mod;
    54                 if(dp[j][k])
    55                 {int gg=gcd(k,v);
    56                     dp[j+1][gg]=(dp[j+1][gg]+dp[j][k])%mod;}
    57             }
    58         }
    59         for(int j=1; j<=maxn; j++)
    60             ans=(ans+j*dp[n][j])%mod;
    61         printf("%I64d
    ",ans);
    62     }
    63     }
    64     return 0;
    65 }
  • 相关阅读:
    关于浏览器的内核 版本 发展 详解
    js判断浏览器内核 及ie的版本问题
    插入flash代码
    大前端学习笔记【七】关于CSS再次整理
    其实,程序员没有我想象得那么简单(算是2016的简单总结吧...)
    大前端学习笔记整理【七】HTTP协议以及http与https的区别
    大前端学习笔记整理【六】this关键字详解
    大前端学习笔记整理【五】关于JavaScript中的关键字——this
    大前端学习笔记整理【五】rem与px换算的计算方式
    大前端学习笔记整理【四】LESS基础
  • 原文地址:https://www.cnblogs.com/hsd-/p/5350538.html
Copyright © 2011-2022 走看看