zoukankan      html  css  js  c++  java
  • HDU 2639 01背包求第k大

    Bone Collector II

    Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3718    Accepted Submission(s): 1903


    Problem Description
    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

    Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

    Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

    If the total number of different values is less than K,just ouput 0.
     
    Input
    The first line contain a integer T , the number of cases.
    Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
     
    Output
    One integer per line representing the K-th maximum of the total value (this number will be less than 231).
     
    Sample Input
    3
    5 10 2
    1 2 3 4 5
    5 4 3 2 1
    5 10 12
    1 2 3 4 5
    5 4 3 2 1
    5 10 16
    1 2 3 4 5
    5 4 3 2 1
     
    Sample Output
    12
    2
    0
     
    Author
    teddy
     
    Source
     
    题意:2602的改版 与普通01背包不同是求第k大价值
     
    题解:增加一维  存储 dp[i][w] 容量为i的背包存放的物品的第w大价值和 
            增加一步 两个序列合并的过程 形成新的k大
     1 #include<iostream>
     2  #include<cstring>
     3  #include<cstdio>
     4  #include<queue>
     5  #include<stack>
     6  #include<map>
     7  #include<set>
     8  #include<algorithm>
     9  #define ll __int64
    10  #define pi acos(-1.0)
    11  #define mod 1
    12  #define maxn 10000
    13  using namespace std;
    14  int t;
    15  int n,v,k;
    16  int a[105];
    17  int b[105];
    18  int we[105],va[105];
    19  int dp[1005][105];
    20  int main()
    21  {
    22      while(scanf("%d",&t)!=EOF)
    23      {
    24          for(int i=1;i<=t;i++)
    25          {
    26              memset(we,0,sizeof(we));
    27              memset(va,0,sizeof(va));
    28              memset(dp,0,sizeof(dp));
    29              scanf("%d %d %d",&n,&v,&k);
    30              for(int j=1;j<=n;j++)
    31               scanf("%d",&we[j]);
    32              for(int j=1;j<=n;j++)
    33               scanf("%d",&va[j]);
    34              for(int j=1;j<=n;j++)
    35              {
    36                  for(int l=v;l>=va[j];l--)
    37                  {
    38                      memset(a,0,sizeof(a));
    39                      memset(b,0,sizeof(b));
    40                      for(int m=1;m<=k;m++)
    41                      {
    42                          a[m]=dp[l][m];
    43                          b[m]=dp[l-va[j]][m]+we[j];
    44                     }
    45                      a[k+1]=-1;
    46                      b[k+1]=-1;
    47                      int x=1,y=1,w=1;
    48                      while(w<=k&&(x<=k||y<=k))//合并的过程
    49                      {
    50                          if(a[x]>b[y])
    51                          {
    52                            dp[l][w]=a[x];
    53                            x++;    
    54                         }
    55                         else
    56                         {
    57                             dp[l][w]=b[y];
    58                             y++;
    59                         }
    60                         if(w==1||dp[l][w]!=dp[l][w-1])       
    61                             w++;
    62                      }
    63                  }
    64              }
    65              cout<<dp[v][k]<<endl;
    66         }
    67     }
    68      return 0;
    69  }
  • 相关阅读:
    设计模式学习总结
    算法时间复杂度和空间复杂度表示
    SQLite简单使用
    接口,组合和继承的想法
    二叉树的学习
    Oracle 常用命令大汇总
    Oracle 最常用功能函数经典汇总
    oracle 常用command
    历史最牛演讲:Oracle总裁Yale演讲全文中英文对照
    深入abstract class和interface
  • 原文地址:https://www.cnblogs.com/hsd-/p/5441013.html
Copyright © 2011-2022 走看看