zoukankan      html  css  js  c++  java
  • HDU 1159 最长公共子序列(n*m)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 32693    Accepted Submission(s): 14786


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
     
    Sample Input
    abcfbc abfcab
    programming contest
    abcd mnp
     
    Sample Output
    4
    2
    0
     
    Source
     
    题意:求两个字符串的最长公共子序列的长度
     
    题解: dp[i][j] 表示a串前i个字符与b串前j个字符 最长公共子序列的长度 N(n*m)
             当a[i]==a[j]时  dp[i][j]=dp[i-1][j-1]+1;
            否则 dp[i][j]=max(dp[i-1][j],dp[i][j-1])
     
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 using namespace std;
     5 char a[1005],b[1005];
     6 int dp[1005][1005];
     7 int main()
     8 {
     9     while(cin>>a>>b)
    10 {
    11     int len1=strlen(a);
    12     int len2=strlen(b);
    13     memset(dp,0,sizeof(dp));
    14     for(int i=1;i<=len1;i++)
    15     for(int j=1;j<=len2;j++)
    16     {
    17         if(a[i-1]==b[j-1])
    18         dp[i][j]=dp[i-1][j-1]+1;
    19         else
    20         dp[i][j]=max(dp[i-1][j],dp[i][j-1]); 
    21     }
    22     cout<<dp[len1][len2]<<endl;
    23 }
    24     return 0;
    25 }
     
  • 相关阅读:
    hdu4651(广义五边形数 & 分割函数1)
    Java基础面试题1
    Java8新特性--Lambda表达式
    Java中list在循环中删除元素的坑
    Java多线程面试题整理
    Java并发包--ConcurrentHashMap原理解析
    HashMap原理解析
    Java原子类--AtomicLongFieldUpdater
    Java原子类--AtomicReference
    Java原子类--AtomicLongArray
  • 原文地址:https://www.cnblogs.com/hsd-/p/5492947.html
Copyright © 2011-2022 走看看