zoukankan      html  css  js  c++  java
  • HDU 4311 前缀和

    Description

    It has been ten years since TJU-ACM established. And in this year all the retired TJU-ACMers want to get together to celebrate the tenth anniversary. Because the retired TJU-ACMers may live in different places around the world, it may be hard to find out where to celebrate this meeting in order to minimize the sum travel time of all the retired TJU-ACMers. 
    There is an infinite integer grid at which N retired TJU-ACMers have their houses on. They decide to unite at a common meeting place, which is someone's house. From any given cell, only 4 adjacent cells are reachable in 1 unit of time. 
    Eg: (x,y) can be reached from (x-1,y), (x+1,y), (x, y-1), (x, y+1). 
    Finding a common meeting place which minimizes the sum of the travel time of all the retired TJU-ACMers. 

    Input

    The first line is an integer T represents there are T test cases. (0<T <=10) 
    For each test case, the first line is an integer n represents there are n retired TJU-ACMers. (0<n<=100000), the following n lines each contains two integers x, y coordinate of the i-th TJU-ACMer. (-10^9 <= x,y <= 10^9) 

    Output

    For each test case, output the minimal sum of travel times.

    Sample Input

    4
    6
    -4 -1
    -1 -2
    2 -4
    0 2
    0 3
    5 -2
    6
    0 0
    2 0
    -5 -2
    2 -2
    -1 2
    4 0
    5
    -5 1
    -1 3
    3 1
    3 -1
    1 -1
    10
    -1 -1
    -3 2
    -4 4
    5 2
    5 -4
    3 -1
    4 3
    -1 -2
    3 4
    -2 2

    Sample Output

    26
    20
    20
    56
    
            
     

    Hint

     
    In the first case, the meeting point is (-1,-2); the second is (0,0), the third is (3,1) and the last is (-2,2)
     
    题意:n人在不同的地方,选择其中一个人的屋子,使得其他人到这个地方去的距离之和最短
     
    题解:题目要求的距离是曼哈顿距离|x1-x2|+|y1-y2|;所以可以考虑将x,y,分开计算,最后取和的max;
     如何快速处理其他位置到i位置的距离dis[i]?先将坐标排个序 记录前缀和
     可以发现相邻位置的两个i,j=i+1的距离和的关系
    dis[j]=dis[i]+(j-2)*(sumx[j]-sumx[i])-(n-j)*(sumx[j]-sumx[i]) =dis[i]+(2*i-n)*(sumx[j]-sumx[i])
     
     1 /******************************
     2 code by drizzle
     3 blog: www.cnblogs.com/hsd-/
     4 ^ ^    ^ ^
     5  O      O
     6 ******************************/
     7 //#include<bits/stdc++.h>
     8 #include<iostream>
     9 #include<cstring>
    10 #include<cstdio>
    11 #include<map>
    12 #include<algorithm>
    13 #include<cmath>
    14 #define ll long long
    15 #define PI acos(-1.0)
    16 #define mod 1000000007
    17 int t;
    18 using namespace std;
    19 struct node
    20 {
    21     ll x,y,pos;
    22 } N[100005];
    23 ll sumx[100005];
    24 ll sumy[100005];
    25 ll ans1[100005];
    26 ll ans2[100005];
    27 int exm;
    28 bool cmp1(struct node aa,struct node bb)
    29 {
    30     return aa.x<bb.x;
    31 }
    32 bool cmp2(struct node aa,struct node bb)
    33 {
    34     return aa.y<bb.y;
    35 }
    36 int main()
    37 {
    38     while(~scanf("%d",&t))
    39     {
    40         for(int i=1; i<=t; i++)
    41         {
    42             scanf("%d",&exm);
    43             memset(N,0,sizeof(N));
    44             memset(ans1,0,sizeof(ans1));
    45             memset(ans2,0,sizeof(ans2));
    46             for(int j=1; j<=exm; j++)
    47             {
    48                 scanf("%I64d %I64d",&N[j].x,&N[j].y);
    49                 N[j].pos=j;
    50             }
    51             sort(N+1,N+1+exm,cmp1);
    52             sumx[1]=0;
    53             for(int j=2; j<=exm; j++)
    54             {
    55                 sumx[j]=sumx[j-1]+N[j].x-N[j-1].x;
    56                 ans1[N[1].pos]+=sumx[j];
    57             }
    58             for(int j=2; j<=exm; j++)
    59             {
    60 
    61                 ans1[N[j].pos]=ans1[N[j-1].pos]-(exm-j)*(sumx[j]-sumx[j-1])+(j-2)*(sumx[j]-sumx[j-1]);
    62             }
    63             sort(N+1,N+1+exm,cmp2);
    64             sumy[1]=0;
    65             for(int j=2; j<=exm; j++)
    66             {
    67                 sumy[j]=sumy[j-1]+N[j].y-N[j-1].y;
    68                 ans2[N[1].pos]+=sumy[j];
    69             }
    70             for(int j=2; j<=exm; j++)
    71             {
    72                 ans2[N[j].pos]=ans2[N[j-1].pos]-(exm-j)*(sumy[j]-sumy[j-1])+(j-2)*(sumy[j]-sumy[j-1]);
    73             }
    74             ll maxn=ans1[1]+ans2[1];
    75             for(int j=1; j<=exm; j++)
    76             {
    77                 if(ans1[j]+ans2[j]<maxn)
    78                 {
    79                     maxn=ans1[j]+ans2[j];
    80                 }
    81             }
    82             printf("%I64d
    ",maxn);
    83         }
    84     }
    85     return 0;
    86 }
  • 相关阅读:
    Angular 中自定义模块
    16 Angular【无人点餐无人收银系统案例】路由配置、菜品列表制作、请求数据渲染二维数组、 动态路由传值 、绑定html【基础项目
    13-angular中的路由
    Angular 互 中的数据交互 (get jsonp post )
    11-Rxjs异步数据流编程-Rxjs快速入门教程
    10 Angular中的生命周期函数--动态挂载销毁组件
    Angular 父子组件以及组件之间通讯
    Angular 中的 Dom 操作以及@ViewChild 、 Angular 执行 css3 动画
    Angular中的服务 以及自定义服务-数据持久化
    Stack与Queue
  • 原文地址:https://www.cnblogs.com/hsd-/p/5726546.html
Copyright © 2011-2022 走看看