zoukankan      html  css  js  c++  java
  • HDU 1796 容斥原理

    How many integers can you find

    Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 7439    Accepted Submission(s): 2200


    Problem Description
      Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
     
    Input
      There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
     
    Output
      For each case, output the number.
     
    Sample Input
    12 2
    2 3
     
    Sample Output
    7
     
    Author
    wangye
     
    Source
     
    题意:给你m个数 可能含有0   问有多少小于n的正数能整除这个m个数中的某一个
    题解:特判除零  容斥原理   这m个数 组合时不能直接相乘 应当取最小公倍数
     1 /******************************
     2 code by drizzle
     3 blog: www.cnblogs.com/hsd-/
     4 ^ ^    ^ ^
     5  O      O
     6 ******************************/
     7 #include<bits/stdc++.h>
     8 #include<map>
     9 #include<set>
    10 #include<cmath>
    11 #include<queue>
    12 #include<bitset>
    13 #include<math.h>
    14 #include<vector>
    15 #include<string>
    16 #include<stdio.h>
    17 #include<cstring>
    18 #include<iostream>
    19 #include<algorithm>
    20 #pragma comment(linker, "/STACK:102400000,102400000")
    21 using namespace std;
    22 #define  A first
    23 #define B second
    24 const int mod=1000000007;
    25 const int MOD1=1000000007;
    26 const int MOD2=1000000009;
    27 const double EPS=0.00000001;
    28 typedef __int64 ll;
    29 const ll MOD=1000000007;
    30 const int INF=1000000010;
    31 const ll MAX=1ll<<55;
    32 const double eps=1e-8;
    33 const double inf=~0u>>1;
    34 const double pi=acos(-1.0);
    35 typedef double db;
    36 typedef unsigned int uint;
    37 typedef unsigned long long ull;
    38 ll gcd(ll aa,ll bb)
    39 {
    40     if(bb==0)
    41         return aa;
    42     else
    43         return gcd(bb,aa%bb);
    44 }
    45 ll lcm(ll aa,ll bb)
    46 {
    47     return aa*bb/gcd(aa,bb);
    48 }
    49 ll n,m;
    50 ll que[15];
    51 ll a[10000];
    52 ll ggg;
    53 ll coun;
    54 ll slove(ll gg)
    55 {
    56     ll t=0,sum=0;
    57     a[t++]=-1;
    58     for(ll i=0;i<coun;i++)
    59     {
    60 
    61         ll k=t;
    62         for(ll j=0;j<k;j++)
    63          {
    64              a[t++]=que[i]*a[j]*(-1);
    65              if(a[t-1]>0)
    66                  a[t-1]=lcm(que[i],-a[j]);
    67             else
    68                  a[t-1]=0-lcm(que[i],a[j]);
    69          }
    70     }
    71     for(ll i=1;i<t;i++)
    72             sum=sum+(gg/a[i]);
    73     return sum;
    74 }
    75 int main()
    76 {
    77     while(scanf("%I64d %I64d",&n,&m)!=EOF)
    78     {
    79         memset(que,0,sizeof(que));
    80         memset(a,0,sizeof(a));
    81         coun=0;
    82         for(ll i=0;i<m;i++)
    83            {
    84                scanf("%I64d",&ggg);
    85                if(ggg!=0)
    86                 que[coun++]=ggg;
    87            }
    88         printf("%I64d
    ",slove(n-1));
    89     }
    90      return 0;
    91 }
     
  • 相关阅读:
    MMDrawerController(第三方类库)侧边栏的使用
    NSString 字符串的一些操作
    AVAudioPlayer实现音乐播放(AFSoundManager的简单介绍)
    歌词同步小控件
    豆瓣FM音乐播放器
    SDWebImage的简单使用
    用系统图标创建UITabBarController
    LeetCode 树(N叉树遍历和二叉树遍历及其他)
    《汇编语言》——王爽 第15章 外中断
    《汇编语言》——王爽 第14章 端口
  • 原文地址:https://www.cnblogs.com/hsd-/p/6013729.html
Copyright © 2011-2022 走看看