zoukankan      html  css  js  c++  java
  • HDU 5950 矩阵快速幂

    Recursive sequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 30    Accepted Submission(s): 20


    Problem Description
    Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number b. After that, the i-th cow says the sum of twice the (i-2)-th number, the (i-1)-th number, and i4 . Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right.
     
    Input
    The first line of input contains an integer t, the number of test cases. t test cases follow.
    Each case contains only one line with three numbers N, a and b where N,a,b < 231 as described above.
     
    Output
    For each test case, output the number of the N-th cow. This number might be very large, so you need to output it modulo 2147493647.
     
    Sample Input
    2 3 1 2 4 1 10
     
    Sample Output
    85 369
    Hint
    In the first case, the third number is 85 = 2*1十2十3^4. In the second case, the third number is 93 = 2*1十1*10十3^4 and the fourth number is 369 = 2 * 10 十 93 十 4^4.
     
    Source
    题意:f[i]=2*f[i-2]+f[i-1]+i^4
    题解:[f[i],f[i-1],i^4,i^3,i^2,i,1]
      1 1 0 0 0 0 0
      2 0 0 0 0 0 0
      1 0 1 0 0 0 0
      4 0 4 1 0 0 0
      6 0 6 3 1 0 0
      4 0 4 3 2 1 0
      1 0 1 1 1 1 1
    构造矩阵  矩阵快速幂
      1 /******************************
      2 code by drizzle
      3 blog: www.cnblogs.com/hsd-/
      4 ^ ^    ^ ^
      5  O      O
      6 ******************************/
      7 #include<bits/stdc++.h>
      8 #include<map>
      9 #include<set>
     10 #include<cmath>
     11 #include<queue>
     12 #include<bitset>
     13 #include<math.h>
     14 #include<vector>
     15 #include<string>
     16 #include<stdio.h>
     17 #include<cstring>
     18 #include<iostream>
     19 #include<algorithm>
     20 #pragma comment(linker, "/STACK:102400000,102400000")
     21 using namespace std;
     22 #define  A first
     23 #define B second
     24 const int mod=1000000007;
     25 const int MOD1=1000000007;
     26 const int MOD2=1000000009;
     27 const double EPS=0.00000001;
     28 typedef __int64 ll;
     29 const ll MOD=1000000007;
     30 const int INF=1000000010;
     31 const ll MAX=1ll<<55;
     32 const double eps=1e-8;
     33 const double inf=~0u>>1;
     34 const double pi=acos(-1.0);
     35 typedef double db;
     36 typedef unsigned int uint;
     37 typedef unsigned long long ull;
     38 const ll k=2147493647;
     39 struct matrix
     40 {
     41    ll m[10][10];
     42 } ans,exm;
     43 struct matrix matrix_mulit1(struct matrix aa,struct matrix bb)
     44 {
     45     struct matrix there;
     46     for(int i=0;i<7;i++)
     47     {
     48         for(int j=0;j<7;j++)
     49         {
     50             there.m[i][j]=0;
     51             for(int u=0;u<7;u++)
     52             there.m[i][j]=(there.m[i][j]+aa.m[i][u]*bb.m[u][j]%k)%k;
     53         }
     54     }
     55     return there;
     56 }
     57 struct matrix matrix_mulit2(struct matrix aa,struct matrix bb)
     58 {
     59     struct matrix there;
     60         for(int j=0;j<7;j++)
     61         {
     62             there.m[0][j]=0;
     63             for(int u=0;u<7;u++)
     64             there.m[0][j]=(there.m[0][j]+aa.m[0][u]*bb.m[u][j]%k)%k;
     65         }
     66     return there;
     67 }
     68 ll matrix_quick(ll aa,ll bb,ll gg)
     69 {
     70 exm.m[0][0]=1;exm.m[0][1]=1;exm.m[0][2]=0;exm.m[0][3]=0;exm.m[0][4]=0;exm.m[0][5]=0;exm.m[0][6]=0;
     71 exm.m[1][0]=2;exm.m[1][1]=0;exm.m[1][2]=0;exm.m[1][3]=0;exm.m[1][4]=0;exm.m[1][5]=0;exm.m[1][6]=0;
     72 exm.m[2][0]=1;exm.m[2][1]=0;exm.m[2][2]=1;exm.m[2][3]=0;exm.m[2][4]=0;exm.m[2][5]=0;exm.m[2][6]=0;
     73 exm.m[3][0]=4;exm.m[3][1]=0;exm.m[3][2]=4;exm.m[3][3]=1;exm.m[3][4]=0;exm.m[3][5]=0;exm.m[3][6]=0;
     74 exm.m[4][0]=6;exm.m[4][1]=0;exm.m[4][2]=6;exm.m[4][3]=3;exm.m[4][4]=1;exm.m[4][5]=0;exm.m[4][6]=0;
     75 exm.m[5][0]=4;exm.m[5][1]=0;exm.m[5][2]=4;exm.m[5][3]=3;exm.m[5][4]=2;exm.m[5][5]=1;exm.m[5][6]=0;
     76 exm.m[6][0]=1;exm.m[6][1]=0;exm.m[6][2]=1;exm.m[6][3]=1;exm.m[6][4]=1;exm.m[6][5]=1;exm.m[6][6]=1;
     77 ans.m[0][0]=bb;ans.m[0][1]=aa;ans.m[0][2]=16;ans.m[0][3]=8;ans.m[0][4]=4;ans.m[0][5]=2;ans.m[0][6]=1;
     78      gg-=2;
     79      while(gg)
     80      {
     81         if(gg&1)
     82         ans=matrix_mulit2(ans,exm);
     83         exm=matrix_mulit1(exm,exm);
     84         gg >>= 1;
     85      }
     86      return ans.m[0][0];
     87 }
     88 int t;
     89 ll n,a,b;
     90 int main()
     91 {
     92     scanf("%d",&t);
     93     for(int i=1;i<=t;i++)
     94     {
     95         scanf("%I64d %I64d %I64d",&n,&a,&b);
     96         if(n==1)
     97             printf("%I64d
    ",a);
     98         else if(n==2)
     99             printf("%I64d
    ",b);
    100         else
    101         printf("%I64d
    ",(matrix_quick(a, b, n)+k)%k);
    102     }
    103     return 0;
    104 }
  • 相关阅读:
    4.22日日常记录
    ajax再接触
    一些小姿势
    打星功能
    悟透javascript读书笔记
    初接触eclipse和前后端调试问题 待续
    python实现后台员工管理系统
    python实现增删改查操作
    python实现6种方法打印九九乘法表
    python实现猜数字游戏
  • 原文地址:https://www.cnblogs.com/hsd-/p/6013746.html
Copyright © 2011-2022 走看看