zoukankan      html  css  js  c++  java
  • HDU 1907 nim博弈变形

    John

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 4479    Accepted Submission(s): 2567


    Problem Description
    Little John is playing very funny game with his younger brother. There is one big box filled with M&Ms of different colors. At first John has to eat several M&Ms of the same color. Then his opponent has to make a turn. And so on. Please note that each player has to eat at least one M&M during his turn. If John (or his brother) will eat the last M&M from the box he will be considered as a looser and he will have to buy a new candy box.

    Both of players are using optimal game strategy. John starts first always. You will be given information about M&Ms and your task is to determine a winner of such a beautiful game.

     
    Input
    The first line of input will contain a single integer T – the number of test cases. Next T pairs of lines will describe tests in a following format. The first line of each test will contain an integer N – the amount of different M&M colors in a box. Next line will contain N integers Ai, separated by spaces – amount of M&Ms of i-th color.

    Constraints:
    1 <= T <= 474,
    1 <= N <= 47,
    1 <= Ai <= 4747

     
    Output
    Output T lines each of them containing information about game winner. Print “John” if John will win the game or “Brother” in other case.

     
    Sample Input
    2
    3
    3 5 1
    1
    1
     
    Sample Output
    John
    Brother
     
    Source
     题意:n堆石子 两个人轮流拿某一堆的石子 最少拿一个  拿走最后一个的输
     题解:nim博弈的分析 重在分析 贴Fsss的分析 链接
    经典的Nim博弈的一点变形。设糖果数为1的叫孤独堆,糖果数大于1的叫充裕堆,设状态S0:a1^a2^..an!=0&&充裕堆=0,则先手必败(奇数个为1的堆,先手必败)。S1:充裕堆=1,则先手必胜(若剩下的n-1个孤独堆个数为奇数个,那么将那个充裕堆全部拿掉,否则将那个充裕堆拿得只剩一个,这样的话先手必胜)。T0:a1^a2^..an=0&&充裕堆=0,先手必胜(只有偶数个孤独堆,先手必胜)。S2:a1^a2^..an!=0&&充裕堆>=2。T2:a1^a2^..an=0&&充裕堆>=2。这样的话我们用S0,S1,S2,T0,T2将所有状态全部表示出来了,并且S0先手必败,S1、T0先手必胜,那么我们只需要对S2和T2的状态进行分析就行了。(a)S2可以取一次变为T2。(b)T2取一次可变为S2或者S1。因为S1是先手必胜态,那么根据a,b这两个转换规则,我们就能得知S2也是先手必胜,T2是先手必败。
     1 /******************************
     2 code by drizzle
     3 blog: www.cnblogs.com/hsd-/
     4 ^ ^    ^ ^
     5  O      O
     6 ******************************/
     7 #include<bits/stdc++.h>
     8 #include<map>
     9 #include<set>
    10 #include<cmath>
    11 #include<queue>
    12 #include<bitset>
    13 #include<math.h>
    14 #include<vector>
    15 #include<string>
    16 #include<stdio.h>
    17 #include<cstring>
    18 #include<iostream>
    19 #include<algorithm>
    20 #pragma comment(linker, "/STACK:102400000,102400000")
    21 using namespace std;
    22 #define  A first
    23 #define B second
    24 const int mod=1000000007;
    25 const int MOD1=1000000007;
    26 const int MOD2=1000000009;
    27 const double EPS=0.00000001;
    28 typedef __int64 ll;
    29 const ll MOD=1000000007;
    30 const int INF=1000000010;
    31 const ll MAX=1ll<<55;
    32 const double eps=1e-14;
    33 const double inf=~0u>>1;
    34 const double pi=acos(-1.0);
    35 typedef double db;
    36 typedef unsigned int uint;
    37 typedef unsigned long long ull;
    38 int t;
    39 int n;
    40 int ans,cou;
    41 int main()
    42 {
    43     while(scanf("%d",&t)!=EOF)
    44     {
    45         for(int i=1;i<=t;i++)
    46         {
    47             scanf("%d",&n);
    48             ans=cou=0;
    49             int exm;
    50             for(int j=1;j<=n;j++)
    51             {
    52               scanf("%d",&exm);
    53               ans^=exm;
    54               if(exm>1)
    55                 cou++;
    56             }
    57             if((ans==0&&cou>=2)||(cou==0&&ans%2!=0))
    58                 printf("Brother
    ");
    59             else
    60                 printf("John
    ");
    61         }
    62     }
    63 
    64     return 0;
    65 }
  • 相关阅读:
    linux 文件时间
    linux命令学习 touch
    linux命令学习 cp
    Linux命令学习 mv
    SpringMVC mvc详解
    JDBC原生态代码
    java中静态方法中调用非静态方法的详解
    Spring技术详解
    Spring中的 BeanFactory和 ApplicationContext的区别与解释
    java多线程编程相关技术
  • 原文地址:https://www.cnblogs.com/hsd-/p/6017485.html
Copyright © 2011-2022 走看看