zoukankan      html  css  js  c++  java
  • HDU 5446 中国剩余定理+lucas

    Unknown Treasure

    Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 2389    Accepted Submission(s): 885


    Problem Description
    On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M . M is the product of several different primes.
     
    Input
    On the first line there is an integer T(T20) representing the number of test cases.

    Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk . It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k} .
     
    Output
    For each test case output the correct combination on a line.
     
    Sample Input
    1 9 5 2 3 5
     
    Sample Output
    6
     
    Source
     
    题意:C(n,m)%p1*p2*p3..pk
    题解:中国剩余定理+lucas
      1 #include<iostream>
      2 #include<cstring>
      3 #include<cstdio>
      4 #include<algorithm>
      5 #define ll __int64
      6 #define mod 10000000007
      7 using namespace std;
      8 ll n,m,k;
      9 int t;
     10 ll exm;
     11 ll f[1000010];
     12 void init(int p) {                 //f[n] = n!
     13     f[0] = 1;
     14     for (int i=1; i<=p; ++i) f[i] = f[i-1] * i % p;
     15 }
     16 ll mulmod(ll x,ll y,ll m)
     17 {
     18     ll ans=0;
     19     while(y)
     20     {
     21         if(y%2)
     22         {
     23             ans+=x;
     24             ans%=m;
     25         }
     26         x+=x;
     27         x%=m;
     28         y/=2;
     29     }
     30     ans=(ans+m)%m;
     31     return ans;
     32 }
     33 
     34 void exgcd(ll a, ll b, ll &x, ll &y)
     35 {
     36     if(b == 0)
     37     {
     38         x = 1;
     39         y = 0;
     40         return;
     41     }
     42     exgcd(b, a % b, x, y);
     43     ll tmp = x;
     44     x = y;
     45     y = tmp - (a / b) * y;
     46 }
     47 
     48 ll pow_mod(ll a, ll x, int p)   {
     49     ll ret = 1;
     50     while (x)   {
     51         if (x & 1)  ret = ret * a % p;
     52         a = a * a % p;
     53         x >>= 1;
     54     }
     55     return ret;
     56 }
     57 ll CRT(ll a[],ll m[],ll n)
     58 {
     59     ll M = 1;
     60     ll ans = 0;
     61     for(ll i=0; i<n; i++)
     62         M *= m[i];
     63     for(ll i=0; i<n; i++)
     64     {
     65         ll x, y;
     66         ll Mi = M / m[i];
     67         exgcd(Mi, m[i], x, y);
     68         ans = (ans +mulmod( mulmod( x , Mi ,M ), a[i] , M ) ) % M;
     69     }
     70     ans=(ans + M )% M;
     71     return ans;
     72 }
     73 
     74 ll Lucas(ll n, ll k, ll p) {       //C (n, k) % p
     75      init(p);
     76      ll ret = 1;
     77      while (n && k) {
     78         ll nn = n % p, kk = k % p;
     79         if (nn < kk) return 0;                   //inv (f[kk]) = f[kk] ^ (p - 2) % p
     80         ret = ret * f[nn] * pow_mod (f[kk] * f[nn-kk] % p, p - 2, p) % p;
     81         n /= p, k /= p;
     82      }
     83      return ret;
     84 }
     85 int main ()
     86 {
     87     scanf("%d",&t);
     88     {
     89         for(int i=1;i<=t;i++)
     90         {
     91             ll ee[15];
     92             ll gg[15];
     93             scanf("%I64d %I64d %I64d",&n,&m,&k);
     94             for(ll j=0;j<k;j++)
     95             {
     96                 scanf("%I64d",&exm);
     97                 gg[j]=exm;;
     98                 ee[j]=Lucas(n,m,exm);
     99             }
    100             printf("%I64d
    ",CRT(ee,gg,k));
    101         }
    102     }
    103     return 0;
    104 }
     
  • 相关阅读:
    [Swift通天遁地]五、高级扩展-(2)扩展集合类型
    [Swift通天遁地]五、高级扩展-(1)快速检测设备属性:版本、类型、屏幕尺寸
    [Swift]LeetCode266.回文全排列 $ Palindrome Permutation
    [Swift]LeetCode265.粉刷房子 II $ Paint House II
    [Swift]LeetCode264.丑数 II | Ugly Number II
    [Swift通天遁地]四、网络和线程-(15)程序内购功能
    [Swift通天遁地]四、网络和线程-(14)创建一个Socket服务端
    hdu 4888 Redraw Beautiful Drawings(最大流,判环)
    【剑指offer】斐波那契序列与跳台阶
    Asp.NET之对象学习
  • 原文地址:https://www.cnblogs.com/hsd-/p/6119839.html
Copyright © 2011-2022 走看看