zoukankan      html  css  js  c++  java
  • HDU 5446 中国剩余定理+lucas

    Unknown Treasure

    Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 2389    Accepted Submission(s): 885


    Problem Description
    On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M . M is the product of several different primes.
     
    Input
    On the first line there is an integer T(T20) representing the number of test cases.

    Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk . It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k} .
     
    Output
    For each test case output the correct combination on a line.
     
    Sample Input
    1 9 5 2 3 5
     
    Sample Output
    6
     
    Source
     
    题意:C(n,m)%p1*p2*p3..pk
    题解:中国剩余定理+lucas
      1 #include<iostream>
      2 #include<cstring>
      3 #include<cstdio>
      4 #include<algorithm>
      5 #define ll __int64
      6 #define mod 10000000007
      7 using namespace std;
      8 ll n,m,k;
      9 int t;
     10 ll exm;
     11 ll f[1000010];
     12 void init(int p) {                 //f[n] = n!
     13     f[0] = 1;
     14     for (int i=1; i<=p; ++i) f[i] = f[i-1] * i % p;
     15 }
     16 ll mulmod(ll x,ll y,ll m)
     17 {
     18     ll ans=0;
     19     while(y)
     20     {
     21         if(y%2)
     22         {
     23             ans+=x;
     24             ans%=m;
     25         }
     26         x+=x;
     27         x%=m;
     28         y/=2;
     29     }
     30     ans=(ans+m)%m;
     31     return ans;
     32 }
     33 
     34 void exgcd(ll a, ll b, ll &x, ll &y)
     35 {
     36     if(b == 0)
     37     {
     38         x = 1;
     39         y = 0;
     40         return;
     41     }
     42     exgcd(b, a % b, x, y);
     43     ll tmp = x;
     44     x = y;
     45     y = tmp - (a / b) * y;
     46 }
     47 
     48 ll pow_mod(ll a, ll x, int p)   {
     49     ll ret = 1;
     50     while (x)   {
     51         if (x & 1)  ret = ret * a % p;
     52         a = a * a % p;
     53         x >>= 1;
     54     }
     55     return ret;
     56 }
     57 ll CRT(ll a[],ll m[],ll n)
     58 {
     59     ll M = 1;
     60     ll ans = 0;
     61     for(ll i=0; i<n; i++)
     62         M *= m[i];
     63     for(ll i=0; i<n; i++)
     64     {
     65         ll x, y;
     66         ll Mi = M / m[i];
     67         exgcd(Mi, m[i], x, y);
     68         ans = (ans +mulmod( mulmod( x , Mi ,M ), a[i] , M ) ) % M;
     69     }
     70     ans=(ans + M )% M;
     71     return ans;
     72 }
     73 
     74 ll Lucas(ll n, ll k, ll p) {       //C (n, k) % p
     75      init(p);
     76      ll ret = 1;
     77      while (n && k) {
     78         ll nn = n % p, kk = k % p;
     79         if (nn < kk) return 0;                   //inv (f[kk]) = f[kk] ^ (p - 2) % p
     80         ret = ret * f[nn] * pow_mod (f[kk] * f[nn-kk] % p, p - 2, p) % p;
     81         n /= p, k /= p;
     82      }
     83      return ret;
     84 }
     85 int main ()
     86 {
     87     scanf("%d",&t);
     88     {
     89         for(int i=1;i<=t;i++)
     90         {
     91             ll ee[15];
     92             ll gg[15];
     93             scanf("%I64d %I64d %I64d",&n,&m,&k);
     94             for(ll j=0;j<k;j++)
     95             {
     96                 scanf("%I64d",&exm);
     97                 gg[j]=exm;;
     98                 ee[j]=Lucas(n,m,exm);
     99             }
    100             printf("%I64d
    ",CRT(ee,gg,k));
    101         }
    102     }
    103     return 0;
    104 }
     
  • 相关阅读:
    [原创]桓泽学音频编解码(13):AC3 位分配模块算法分析
    白话红黑树系列之一——初识红黑树
    白话红黑树系列之二——红黑树的构建
    数据驱动编程之表驱动法
    每周一算法之六——KMP字符串匹配算法
    HDOJ 1098 Ignatius's puzzle
    HDOJ 1097 A hard puzzle(循环问题)
    HDOJ 1019 Least Common Multiple(最小公倍数问题)
    辗转相除法_欧几里得算法_java的实现(求最大公约数)
    HDOJ 1020 Encoding
  • 原文地址:https://www.cnblogs.com/hsd-/p/6119839.html
Copyright © 2011-2022 走看看