zoukankan      html  css  js  c++  java
  • HDU 5446 中国剩余定理+lucas

    Unknown Treasure

    Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 2389    Accepted Submission(s): 885


    Problem Description
    On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M . M is the product of several different primes.
     
    Input
    On the first line there is an integer T(T20) representing the number of test cases.

    Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk . It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k} .
     
    Output
    For each test case output the correct combination on a line.
     
    Sample Input
    1 9 5 2 3 5
     
    Sample Output
    6
     
    Source
     
    题意:C(n,m)%p1*p2*p3..pk
    题解:中国剩余定理+lucas
      1 #include<iostream>
      2 #include<cstring>
      3 #include<cstdio>
      4 #include<algorithm>
      5 #define ll __int64
      6 #define mod 10000000007
      7 using namespace std;
      8 ll n,m,k;
      9 int t;
     10 ll exm;
     11 ll f[1000010];
     12 void init(int p) {                 //f[n] = n!
     13     f[0] = 1;
     14     for (int i=1; i<=p; ++i) f[i] = f[i-1] * i % p;
     15 }
     16 ll mulmod(ll x,ll y,ll m)
     17 {
     18     ll ans=0;
     19     while(y)
     20     {
     21         if(y%2)
     22         {
     23             ans+=x;
     24             ans%=m;
     25         }
     26         x+=x;
     27         x%=m;
     28         y/=2;
     29     }
     30     ans=(ans+m)%m;
     31     return ans;
     32 }
     33 
     34 void exgcd(ll a, ll b, ll &x, ll &y)
     35 {
     36     if(b == 0)
     37     {
     38         x = 1;
     39         y = 0;
     40         return;
     41     }
     42     exgcd(b, a % b, x, y);
     43     ll tmp = x;
     44     x = y;
     45     y = tmp - (a / b) * y;
     46 }
     47 
     48 ll pow_mod(ll a, ll x, int p)   {
     49     ll ret = 1;
     50     while (x)   {
     51         if (x & 1)  ret = ret * a % p;
     52         a = a * a % p;
     53         x >>= 1;
     54     }
     55     return ret;
     56 }
     57 ll CRT(ll a[],ll m[],ll n)
     58 {
     59     ll M = 1;
     60     ll ans = 0;
     61     for(ll i=0; i<n; i++)
     62         M *= m[i];
     63     for(ll i=0; i<n; i++)
     64     {
     65         ll x, y;
     66         ll Mi = M / m[i];
     67         exgcd(Mi, m[i], x, y);
     68         ans = (ans +mulmod( mulmod( x , Mi ,M ), a[i] , M ) ) % M;
     69     }
     70     ans=(ans + M )% M;
     71     return ans;
     72 }
     73 
     74 ll Lucas(ll n, ll k, ll p) {       //C (n, k) % p
     75      init(p);
     76      ll ret = 1;
     77      while (n && k) {
     78         ll nn = n % p, kk = k % p;
     79         if (nn < kk) return 0;                   //inv (f[kk]) = f[kk] ^ (p - 2) % p
     80         ret = ret * f[nn] * pow_mod (f[kk] * f[nn-kk] % p, p - 2, p) % p;
     81         n /= p, k /= p;
     82      }
     83      return ret;
     84 }
     85 int main ()
     86 {
     87     scanf("%d",&t);
     88     {
     89         for(int i=1;i<=t;i++)
     90         {
     91             ll ee[15];
     92             ll gg[15];
     93             scanf("%I64d %I64d %I64d",&n,&m,&k);
     94             for(ll j=0;j<k;j++)
     95             {
     96                 scanf("%I64d",&exm);
     97                 gg[j]=exm;;
     98                 ee[j]=Lucas(n,m,exm);
     99             }
    100             printf("%I64d
    ",CRT(ee,gg,k));
    101         }
    102     }
    103     return 0;
    104 }
     
  • 相关阅读:
    信息安全系统设计基础第四周学习内容
    信息安全系统设计基础第三周学习总结
    第十二节 Linux下软件安装
    第十一节 正则表达式基础
    session的生命周期
    session对象
    什么是session
    请求重定向和请求转发的关系
    java web的response对象
    java web中request对象(下)
  • 原文地址:https://www.cnblogs.com/hsd-/p/6119839.html
Copyright © 2011-2022 走看看