zoukankan      html  css  js  c++  java
  • HDU 4417 主席树写法

    Super Mario

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6208    Accepted Submission(s): 2687


    Problem Description
    Mario is world-famous plumber. His “burly” figure and amazing jumping ability reminded in our memory. Now the poor princess is in trouble again and Mario needs to save his lover. We regard the road to the boss’s castle as a line (the length is n), on every integer point i there is a brick on height hi. Now the question is how many bricks in [L, R] Mario can hit if the maximal height he can jump is H.
     
    Input
    The first line follows an integer T, the number of test data.
    For each test data:
    The first line contains two integers n, m (1 <= n <=10^5, 1 <= m <= 10^5), n is the length of the road, m is the number of queries.
    Next line contains n integers, the height of each brick, the range is [0, 1000000000].
    Next m lines, each line contains three integers L, R,H.( 0 <= L <= R < n 0 <= H <= 1000000000.)
     
    Output
    For each case, output "Case X: " (X is the case number starting from 1) followed by m lines, each line contains an integer. The ith integer is the number of bricks Mario can hit for the ith query.
     
    Sample Input
    1 10 10 0 5 2 7 5 4 3 8 7 7 2 8 6 3 5 0 1 3 1 1 9 4 0 1 0 3 5 5 5 5 1 4 6 3 1 5 7 5 7 3
     
    Sample Output
    Case 1: 4 0 0 3 1 2 0 1 5 1
     
    Source
     
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstdlib>
      4 #include <cstring>
      5 #include <algorithm>
      6 #include <stack>
      7 #include <queue>
      8 #include <cmath>
      9 #include <map>
     10 #define ll  __int64
     11 #define mod 1000000007
     12 #define dazhi 2147483647
     13 #define N 100005
     14 using namespace  std;
     15 struct chairmantree
     16 {
     17     int tot;
     18     int rt[20*N],ls[20*N],rs[20*N],sum[20*N];
     19     void init()
     20     {
     21         tot=0;
     22     }
     23     void buildtree(int l,int r,int &pos)
     24     {
     25         pos=++tot;
     26         sum[pos]=0;
     27         if(l==r) return ;
     28         int mid=(l+r)>>1;
     29         buildtree(l,mid,ls[pos]);
     30         buildtree(mid+1,r,rs[pos]);
     31     }
     32     void update(int p,int c,int pre,int l,int r,int &pos)
     33     {
     34         pos=++tot;
     35         ls[pos]=ls[pre];
     36         rs[pos]=rs[pre];
     37         sum[pos]=sum[pre]+c;
     38         if(l==r) return ;
     39         int mid=(l+r)>>1;
     40         if(p<=mid)
     41             update(p,c,ls[pre],l,mid,ls[pos]);
     42         else
     43             update(p,c,rs[pre],mid+1,r,rs[pos]);
     44     }
     45     int query(int L,int R,int s,int t,int l,int r)
     46     {
     47         if(s<=l&&r<=t)
     48             return sum[R]-sum[L];
     49         int mid=(l+r)>>1;
     50         int ans=0;
     51         if(s<=mid)
     52             ans+=query(ls[L],ls[R],s,t,l,mid);
     53         if(t>mid)
     54             ans+=query(rs[L],rs[R],s,t,mid+1,r);
     55         return ans;
     56     }
     57 }tree;
     58 
     59 int t;
     60 int n,m;
     61 int a[N];
     62 int b[2*N];
     63 int l[N],r[N],x[N];
     64 int getpos(int x,int cnt)
     65 {
     66     int pos=lower_bound(b+1,b+1+cnt,x)-b;
     67     return pos;
     68 }
     69 int main()
     70 {
     71     scanf("%d",&t);
     72     int T=t;
     73     while(t--)
     74     {
     75         scanf("%d %d",&n,&m);
     76         for(int i=1;i<=n;i++){
     77             scanf("%d",&a[i]);
     78             b[i]=a[i];
     79             }
     80         for(int i=1;i<=m;i++){
     81             scanf("%d %d %d",&l[i],&r[i],&x[i]);
     82             b[i+n]=x[i];
     83             }
     84         sort(b+1,b+1+n+m);
     85         int num=unique(b+1,b+1+n+m)-b;
     86         tree.init();
     87         tree.buildtree(1,num-1,tree.rt[0]);
     88         for(int i=1;i<=n;i++)
     89         {
     90             int pos=getpos(a[i],num-1);
     91             tree.update(pos,1,tree.rt[i-1],1,num-1,tree.rt[i]);
     92         }
     93         printf("Case %d:
    ",T-t);
     94         for(int i=1;i<=m;i++)
     95         {
     96             int pos=getpos(x[i],num-1);
     97             printf("%d
    ",tree.query(tree.rt[l[i]],tree.rt[r[i]+1],1,pos,1,num-1));
     98         }
     99     }
    100     return 0;
    101 }
  • 相关阅读:
    读懂Netty的高性能架构之道
    大型网站架构演变和知识体系(转载)
    SAX,功能强大的 API
    防雪崩利器:熔断器 Hystrix 的原理与使用
    分布式系统设计系列 -- 基本原理及高可用策略
    分布式系统的事务处理
    分布式服务框架之服务化最佳实践
    深入理解 Java 虚拟机:JVM 高级特性与最佳实践
    内存屏障
    IntelliJ IDEA 2016 破解旗舰版
  • 原文地址:https://www.cnblogs.com/hsd-/p/6502962.html
Copyright © 2011-2022 走看看