zoukankan      html  css  js  c++  java
  • 2016-2017 ACM-ICPC East Central North America Regional Contest (ECNA 2016) F 区间dp

    Problem F Removal Game
    Bobby Roberts is totally bored in his algorithms class, so he’s developed a little solitaire game. He writes down a sequence of positive integers and then begins removing them one at a time. The cost of each removal is equal to the greatest common divisor (gcd) of the two surrounding numbers (wrapping around either end if necessary). For example, if the sequence of numbers was 2, 3, 4, 5 he could remove the 3 at a cost of 2 (= gcd(2,4)) or he could remove the 4 at a cost of 1 (= gcd(3,5)). The cost of removing 2 would be 1 and the removal of 5 would cost 2. Note that if the 4 is removed first, the removal of the 3 afterwards now has a cost of only 1. Bobby keeps a running total of each removal cost. When he ends up with just two numbers remaining he takes their gcd, adds that cost to the running total, and ends the game by removing them both. The object of the game is to remove all of the numbers at the minimum total cost. Unfortunately, he spent so much time in class on this game, he didn’t pay attention to several important lectures which would lead him to an algorithm to solve this problem. Since none of you have ever wasted time in your algorithm classes, I’m sure you’ll have no problem finding the minimum cost given any sequence of numbers.
    Input
    Input contains multiple test cases. Each test case consists of a single line starting with an integer n whichindicates thenumber ofvaluesin thesequence (2 ≤ n ≤ 100). This isfollowed by n positive integers which make up the sequence of values in the game. All of these integers will be≤ 1000. Input terminates with a line containing a single 0. There are at most 1000 test cases.
    Output
    For each test case, display the minimum cost of removing all of the numbers.
    Sample Input 1

    4 2 3 4 5

    5 14 2 4 6 8

    0

    Sample Output 1

    3

    8

    题意:给你一个长度为n的序列 每删除一个数的代价为与他相邻的的两个数的gcd 注意是一个循环的序列 把这个序列首尾相接考虑

    题解:参看tyvj1056 写法稍微不同,思想类似。

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define ll long long
     4 #define esp 0.00000000001
     5 const int N=1e3+10,M=1e6+10,inf=1e9+10,mod=1000000007;
     6 int gcd(int a,int  b)
     7 {
     8     return b==0?a:gcd(b,a%b);
     9 }
    10 ll a[N];
    11 ll dp[N][N];
    12 ll ff[1005][1005];
    13 int main()
    14 {
    15     ll x,i,t;
    16     for(int i=1;i<=1000;i++)
    17     {
    18         for(int j=1;j<=1000;j++)
    19         {
    20             ff[i][j]=gcd(i,j);
    21         }
    22     }
    23     while(scanf("%I64d",&x)!=EOF)
    24     {
    25         if(x==0)
    26             break;
    27         for(i=1; i<=x; i++)
    28             scanf("%I64d",&a[i]),a[i+x]=a[i];
    29         for(int i=1; i<=2*x; i++)
    30         {
    31             dp[i][i]=0;
    32             for(int j=i+1; j<=2*x; j++)
    33             {
    34                 dp[i][j]=1000000000;
    35             }
    36         }
    37         for(t=1; t<=x; t++)
    38         {
    39             for(i=1; i+t<2*x; i++)
    40             {
    41                 for(ll k=i; k<t+i; k++)
    42                 {
    43                     if((i+x)==(t+i+1))//终态只剩下两个 直接求gcd 更新
    44                         dp[i][i+t]=min(dp[i][i+t],dp[i][k]+dp[k+1][t+i]+ff[a[i]][a[k+1]]);
    45                     else
    46                         dp[i][i+t]=min(dp[i][i+t],dp[i][k]+dp[k+1][t+i]+ff[a[i]][a[t+i+1]]);
    47                 }
    48             }
    49         }
    50         ll ans=1000000000;
    51         for(i=1; i<=x; i++)
    52             ans=min(ans,dp[i][i+x-1]);
    53         printf("%I64d
    ",ans);
    54     }
    55     return 0;
    56 }
  • 相关阅读:
    18-10-11 关于触发器的学习
    18-10-29 关于设计器机器人等安装遇到的问题的解决方法
    18-10-25 全局函数测试总结 创建时间的目录 网页获取数据 写入数据
    18-09-08 关于Linux 的安装遇到的一些小坑
    18-08-27 机器人自动化之页面表格数据的定位拾取
    day 96 关于分页的使用
    day73 母版 中间件
    通过 U 盘启动重装 macOS 系统
    MAMP 环境下为 php 添加 pcntl 扩展
    使用 Composer 安装 Laravel 框架
  • 原文地址:https://www.cnblogs.com/hsd-/p/6817914.html
Copyright © 2011-2022 走看看