zoukankan      html  css  js  c++  java
  • Apache Spark源码走读之19 -- standalone cluster模式下资源的申请与释放

    欢迎转载,转载请注明出处,徽沪一郎。

    概要

    本文主要讲述在standalone cluster部署模式下,Spark Application在整个运行期间,资源(主要是cpu core和内存)的申请与释放。

    构成Standalone cluster部署模式的四大组成部件如下图所示,分别为Master, worker, executor和driver,它们各自运行于独立的JVM进程。

    从资源管理的角度来说

    • Master  掌管整个cluster的资源,主要是指cpu core和memory,但Master自身并不拥有这些资源
    • Worker 计算资源的实际贡献者,须向Master汇报自身拥有多少cpu core和memory, 在master的指示下负责启动executor
    • Executor 执行真正计算的苦力,由master来决定该进程拥有的core和memory数值
    • Driver 资源的实际占用者,Driver会提交一到多个job,每个job在拆分成多个task之后,会分发到各个executor真正的执行

    这些内容在standalone cluster模式下的容错性分析中也有所涉及,今天主要讲一下资源在分配之后不同场景下是如何被顺利回收的。

    资源上报汇聚过程

    standalone cluster下最主要的当然是master,master必须先于worker和driver程序正常启动。

    当master顺利启动完毕,可以开始worker的启动工作,worker在启动的时候需要向master发起注册,在注册消息中带有本worker节点的cpu core和内存。

    调用顺序如下preStart->registerWithMaster->tryRegisterAllMasters

    看一看tryRegisterAllMasters的代码

     def tryRegisterAllMasters() {
        for (masterUrl <- masterUrls) {
          logInfo("Connecting to master " + masterUrl + "...")
          val actor = context.actorSelection(Master.toAkkaUrl(masterUrl))
          actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)
        }
      }
    

    我们的疑问是RegisterWorker构造函数所需的参数memory和cores是从哪里获取的呢?

    注意一下Worker中的main函数会创建WorkerArguments,

      def main(argStrings: Array[String]) {
        SignalLogger.register(log)
        val args = new WorkerArguments(argStrings)
        val (actorSystem, _) = startSystemAndActor(args.host, args.port, args.webUiPort, args.cores,
          args.memory, args.masters, args.workDir)
        actorSystem.awaitTermination()
      }
    

     memory通过函数inferDefaultMemory获取,而cores通过inferDefaultCores获取。

    def inferDefaultCores(): Int = {
        Runtime.getRuntime.availableProcessors()
      }
    
      def inferDefaultMemory(): Int = {
        val ibmVendor = System.getProperty("java.vendor").contains("IBM")
        var totalMb = 0
        try {
          val bean = ManagementFactory.getOperatingSystemMXBean()
          if (ibmVendor) {
            val beanClass = Class.forName("com.ibm.lang.management.OperatingSystemMXBean")
            val method = beanClass.getDeclaredMethod("getTotalPhysicalMemory")
            totalMb = (method.invoke(bean).asInstanceOf[Long] / 1024 / 1024).toInt
          } else {
            val beanClass = Class.forName("com.sun.management.OperatingSystemMXBean")
            val method = beanClass.getDeclaredMethod("getTotalPhysicalMemorySize")
            totalMb = (method.invoke(bean).asInstanceOf[Long] / 1024 / 1024).toInt
          }
        } catch {
          case e: Exception => {
            totalMb = 2*1024
            System.out.println("Failed to get total physical memory. Using " + totalMb + " MB")
          }
        }
        // Leave out 1 GB for the operating system, but don't return a negative memory size
        math.max(totalMb - 1024, 512)
      }
    

     如果已经在配置文件中为显示指定了每个worker的core和memory,则使用配置文件中的值,具体配置参数为SPARK_WORKER_CORESSPARK_WORKER_MEMORY

    Master在收到RegisterWork消息之后,根据上报的信息为每一个worker创建相应的WorkerInfo.

        case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) =>
        {
          logInfo("Registering worker %s:%d with %d cores, %s RAM".format(
            workerHost, workerPort, cores, Utils.megabytesToString(memory)))
          if (state == RecoveryState.STANDBY) {
            // ignore, don't send response
          } else if (idToWorker.contains(id)) {
            sender ! RegisterWorkerFailed("Duplicate worker ID")
          } else {
            val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,
              sender, workerUiPort, publicAddress)
            if (registerWorker(worker)) {
              persistenceEngine.addWorker(worker)
              sender ! RegisteredWorker(masterUrl, masterWebUiUrl)
              schedule()
            } else {
              val workerAddress = worker.actor.path.address
              logWarning("Worker registration failed. Attempted to re-register worker at same " +
                "address: " + workerAddress)
              sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: "
                + workerAddress)
            }
          }
    

    资源分配过程

    如果在worker注册上来的时候,已经有Driver Application注册上来,那么就需要将原先处于未分配资源状态的driver application启动相应的executor。

    WorkerInfo在schedule函数中会被使用到,schedule函数处理逻辑概述如下

    1. 查看目前存活的worker中剩余的内存是否能够满足application每个task的最低需求,如果是则将该worker加入到可分配资源的队列
    2. 根据分发策略,如果是决定将工作平摊到每个worker,则每次在一个worker上占用一个core,直到所有可分配资源耗尽或已经满足driver的需求
    3. 如果分发策略是分发到尽可能少的worker,则一次占用尽worker上的可分配core,直到driver的core需求得到满足
    4. 根据步骤2或3的结果在每个worker上添加相应的executor,处理函数是addExecutor

    为了叙述简单,现仅列出平摊到各个worker的分配处理过程

          for (worker > workers if worker.coresFree > 0 && worker.state == WorkerState.ALIVE) {
            for (app <- waitingApps if app.coresLeft > 0) {
              if (canUse(app, worker)) {
                val coresToUse = math.min(worker.coresFree, app.coresLeft)
                if (coresToUse > 0) {
                  val exec = app.addExecutor(worker, coresToUse)
                  launchExecutor(worker, exec)
                  app.state = ApplicationState.RUNNING
                }
              }
            }
          }
    

    launchExecutor主要负责两件事情

    1. 记录下新添加的executor使用掉的cpu core和内存数目,记录过程发生在worker.addExecutor
    2. 向worker发送LaunchExecutor指令
      def launchExecutor(worker: WorkerInfo, exec: ExecutorInfo) {
        logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)
        worker.addExecutor(exec)
        worker.actor ! LaunchExecutor(masterUrl,
          exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory)
        exec.application.driver ! ExecutorAdded(
          exec.id, worker.id, worker.hostPort, exec.cores, exec.memory)
      }
    

    worker在收到LaunchExecutor指令后,也会记一笔账,将要使用掉的cpu core和memory从可用资源中减去,然后使用ExecutorRunner来负责生成Executor进程,注意Executor运行于独立的进程。代码如下

    case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>
          if (masterUrl != activeMasterUrl) {
            logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
          } else {
            try {
              logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
              val manager = new ExecutorRunner(appId, execId, appDesc, cores_, memory_,
                self, workerId, host,
                appDesc.sparkHome.map(userSparkHome => new File(userSparkHome)).getOrElse(sparkHome),
                workDir, akkaUrl, conf, ExecutorState.RUNNING)
              executors(appId + "/" + execId) = manager
              manager.start()
              coresUsed += cores_
              memoryUsed += memory_
              masterLock.synchronized {
                master ! ExecutorStateChanged(appId, execId, manager.state, None, None)
              }
            } catch {
              case e: Exception => {
                logError("Failed to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
                if (executors.contains(appId + "/" + execId)) {
                  executors(appId + "/" + execId).kill()
                  executors -= appId + "/" + execId
                }
                masterLock.synchronized {
                  master ! ExecutorStateChanged(appId, execId, ExecutorState.FAILED, None, None)
                }
              }
            }
          }
    

    在资源分配过程中需要注意到的是如果有多个Driver Application处于等待状态,资源分配的原则是FIFO,先到先得。

    资源回收过程

    worker中上报的资源最终被driver application中提交的job task所占用,如果application结束(包括正常和异常退出),application所占用的资源就应该被顺利回收,即将占用的资源重新归入可分配资源行列。

    现在的问题转换成Master和Executor如何知道Driver Application已经退出了呢?

    有两种不同的处理方式,一种是先道别后离开,一种是不告而别。现分别阐述。

    何为先道别后离开,即driver application显式的通知master和executor,任务已经完成了,我要bye了。应用程序显式的调用SparkContext.stop

      def stop() {
        postApplicationEnd()
        ui.stop()
        // Do this only if not stopped already - best case effort.
        // prevent NPE if stopped more than once.
        val dagSchedulerCopy = dagScheduler
        dagScheduler = null
        if (dagSchedulerCopy != null) {
          metadataCleaner.cancel()
          cleaner.foreach(_.stop())
          dagSchedulerCopy.stop()
          taskScheduler = null
          // TODO: Cache.stop()?
          env.stop()
          SparkEnv.set(null)
          ShuffleMapTask.clearCache()
          ResultTask.clearCache()
          listenerBus.stop()
          eventLogger.foreach(_.stop())
          logInfo("Successfully stopped SparkContext")
        } else {
          logInfo("SparkContext already stopped")
        }
      }
    

    显式调用SparkContext.stop的一个主要功能是会去显式的停止Executor,具体下达StopExecutor指令的代码见于CoarseGrainedSchedulerBackend中的stop函数

      override def stop() {
        stopExecutors()
        try {
          if (driverActor != null) {
            val future = driverActor.ask(StopDriver)(timeout)
            Await.ready(future, timeout)
          }
        } catch {
          case e: Exception =>
            throw new SparkException("Error stopping standalone scheduler's driver actor", e)
        }
      }
    

    那么Master又是如何知道Driver Application退出的呢?这要归功于Akka的通讯机制了,当相互通讯的任意一方异常退出,另一方都会收到DisassociatedEvent, Master也就是在这个消息处理中移除已经停止的Driver Application。

        case DisassociatedEvent(_, address, _) => {
          // The disconnected client could've been either a worker or an app; remove whichever it was
          logInfo(s"$address got disassociated, removing it.")
          addressToWorker.get(address).foreach(removeWorker)
          addressToApp.get(address).foreach(finishApplication)
          if (state == RecoveryState.RECOVERING && canCompleteRecovery) { completeRecovery() }
        }
    

    不告而别的方式下Executor是如何知道自己所服务的application已经顺利完成使命了呢?道理和master的一样,还是通过DisassociatedEvent来感知。详见CoarseGrainedExecutorBackend中的receive函数

      case x: DisassociatedEvent =>
          logError(s"Driver $x disassociated! Shutting down.")
          System.exit(1)
    

    异常情况下的资源回收

    由于Master和Worker之间的心跳机制,如果worker异常退出, Master会由心跳机制感知到其消亡,进而将其上报的资源移除。

    Executor异常退出时,Worker中的监控线程ExecutorRunner会立即感知,进而上报给Master,Master会回收资源,并重新要求worker启动executor。

  • 相关阅读:
    Oracle错误——ORA-03113:通信通道的文件结尾
    ASM的failgroup的含义
    手工删除卸载oracle 11g rac的具体步骤(方法)
    手工删除卸载oracle 11g rac的具体步骤(方法)
    oracle RAC 更换存储迁移数据(在线迁移ASM磁盘组)测试
    Oracle kernel parameters tuning on Linux
    oracle: default role 详解(转)
    类模板深度剖析
    类模板的概念和意义
    深入理解函数模板
  • 原文地址:https://www.cnblogs.com/hseagle/p/3858694.html
Copyright © 2011-2022 走看看