zoukankan      html  css  js  c++  java
  • Apache Spark源码走读之23 -- Spark MLLib中拟牛顿法L-BFGS的源码实现

    欢迎转载,转载请注明出处,徽沪一郎。

    概要

    本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读。

    拟牛顿法

    数学原理

     

    代码实现

    L-BFGS算法中使用到的正则化方法是SquaredL2Updater。

    算法实现上使用到了由scalanlp的成员项目breeze库中的BreezeLBFGS函数,mllib中自定义了BreezeLBFGS所需要的DiffFunctions.



    runLBFGS函数的源码实现如下

    def runLBFGS(
          data: RDD[(Double, Vector)],
          gradient: Gradient,
          updater: Updater,
          numCorrections: Int,
          convergenceTol: Double,
          maxNumIterations: Int,
          regParam: Double,
          initialWeights: Vector): (Vector, Array[Double]) = {
    
        val lossHistory = new ArrayBuffer[Double](maxNumIterations)
    
        val numExamples = data.count()
    
        val costFun =
          new CostFun(data, gradient, updater, regParam, numExamples)
    
        val lbfgs = new BreezeLBFGS[BDV[Double]](maxNumIterations, numCorrections, convergenceTol)
    
        val states =
          lbfgs.iterations(new CachedDiffFunction(costFun), initialWeights.toBreeze.toDenseVector)
    
        /**
         * NOTE: lossSum and loss is computed using the weights from the previous iteration
         * and regVal is the regularization value computed in the previous iteration as well.
         */
        var state = states.next()
        while(states.hasNext) {
          lossHistory.append(state.value)
          state = states.next()
        }
        lossHistory.append(state.value)
        val weights = Vectors.fromBreeze(state.x)
    
        logInfo("LBFGS.runLBFGS finished. Last 10 losses %s".format(
          lossHistory.takeRight(10).mkString(", ")))
    
        (weights, lossHistory.toArray)
      }
    

    costFun函数是算法实现中的重点

    private class CostFun(
        data: RDD[(Double, Vector)],
        gradient: Gradient,
        updater: Updater,
        regParam: Double,
        numExamples: Long) extends DiffFunction[BDV[Double]] {
    
        private var i = 0
    
        override def calculate(weights: BDV[Double]) = {
          // Have a local copy to avoid the serialization of CostFun object which is not serializable.
          val localData = data
          val localGradient = gradient
    
          val (gradientSum, lossSum) = localData.aggregate((BDV.zeros[Double](weights.size), 0.0))(
              seqOp = (c, v) => (c, v) match { case ((grad, loss), (label, features)) =>
                val l = localGradient.compute(
                  features, label, Vectors.fromBreeze(weights), Vectors.fromBreeze(grad))
                (grad, loss + l)
              },
              combOp = (c1, c2) => (c1, c2) match { case ((grad1, loss1), (grad2, loss2)) =>
                (grad1 += grad2, loss1 + loss2)
              })
    
          /**
           * regVal is sum of weight squares if it's L2 updater;
           * for other updater, the same logic is followed.
           */
          val regVal = updater.compute(
            Vectors.fromBreeze(weights),
            Vectors.dense(new Array[Double](weights.size)), 0, 1, regParam)._2
    
          val loss = lossSum / numExamples + regVal
          /**
           * It will return the gradient part of regularization using updater.
           *
           * Given the input parameters, the updater basically does the following,
           *
           * w' = w - thisIterStepSize * (gradient + regGradient(w))
           * Note that regGradient is function of w
           *
           * If we set gradient = 0, thisIterStepSize = 1, then
           *
           * regGradient(w) = w - w'
           *
           * TODO: We need to clean it up by separating the logic of regularization out
           *       from updater to regularizer.
           */
          // The following gradientTotal is actually the regularization part of gradient.
          // Will add the gradientSum computed from the data with weights in the next step.
          val gradientTotal = weights - updater.compute(
            Vectors.fromBreeze(weights),
            Vectors.dense(new Array[Double](weights.size)), 1, 1, regParam)._1.toBreeze
    
          // gradientTotal = gradientSum / numExamples + gradientTotal
          axpy(1.0 / numExamples, gradientSum, gradientTotal)
    
          i += 1
    
          (loss, gradientTotal)
        }
      }
    
    }
    
  • 相关阅读:
    UVA 125 Numbering Paths
    UVA 515 King
    UVA 558 Wormholes
    UVA 10801 Lift Hopping
    UVA 10896 Sending Email
    SGU 488 Dales and Hills
    HDU 3397 Sequence operation
    数据库管理工具navicat的使用
    javascript封装animate动画
    关于webpack没有全局安装下的启动命令
  • 原文地址:https://www.cnblogs.com/hseagle/p/3927887.html
Copyright © 2011-2022 走看看