zoukankan      html  css  js  c++  java
  • OpenCV 傅里叶变换 低频滤波

    #include <opencv2corecore.hpp>
    #include <opencv2highguihighgui.hpp>
    #include <opencv2imgprocimgproc.hpp>
    using namespace std;
    using namespace cv;
    int main()
    {
        string path = "1.png";
        Mat src = imread(path, 0);
        //【1】创建一个复数矩阵,储存傅里叶变换后的矩阵
        int r = getOptimalDFTSize(src.rows);
        int c = getOptimalDFTSize(src.cols);//得到最优尺寸
        Mat padded;
        //扩充src的边缘,将图像变大( 0, r - src.rows, 0, c - src.cols)分别表示上下左右;
        copyMakeBorder(src, padded, 0, r - src.rows, 0, c - src.cols, BORDER_CONSTANT, ::Scalar::all(0));
        //创建一个复数矩阵,实部为plane[0],虚部plane[1]填充0
        Mat plane[] = { Mat_<float>(padded),Mat::zeros(padded.size(),CV_32F) }; 
        //【2】傅里叶变换
        Mat complexImg;
        merge(plane, 2, complexImg); //可以理解为组合成2通道(实部+虚部)图像
        dft(complexImg, complexImg); //DFT变换后的数据复制到原处,没有另外开辟内存, complexImg是个复数矩阵
        
        int cx = complexImg.cols / 2;
        int cy = complexImg.rows / 2;
        Mat m1(complexImg, cv::Rect(0, 0, cx, cy)); //左上部分
        Mat m2(complexImg, cv::Rect(cx, 0, cx, cy)); //右上部分
        Mat m3(complexImg, cv::Rect(0, cy, cx, cy)); //左下部分
        Mat m4(complexImg, cv::Rect(cx, cy, cx, cy)); //右下部分
        Mat temp;
        m1.copyTo(temp);
        m4.copyTo(m1);
        temp.copyTo(m4);
        m2.copyTo(temp);
        m3.copyTo(m2);
        temp.copyTo(m3);
        Mat partFrequencyImg;
        complexImg.copyTo(partFrequencyImg);
        //变换频率
        int nx1 = int(0.5f*padded.cols);
        int nx2 = int(0.5f*padded.cols);
        int ny1 = int(0.5f*padded.rows);
        int ny2 = int(0.5f*padded.rows);
        //逆变换
        partFrequencyImg.colRange(nx1, nx2+1).setTo(Scalar::all(0));
        partFrequencyImg.rowRange(ny1, ny2+1).setTo(Scalar::all(0));
        Mat iPartDft[] = { Mat::zeros(padded.size(),CV_32F),Mat::zeros(padded.size(),CV_32F) };
        idft(partFrequencyImg, partFrequencyImg);
        split(partFrequencyImg, iPartDft);
        magnitude(iPartDft[0], iPartDft[1], iPartDft[0]);
        cv::normalize(iPartDft[0], iPartDft[0], 1, 0, CV_MINMAX);
        Mat l = iPartDft[0];
        imshow("l", l);
        waitKey(0);
    }
  • 相关阅读:
    JQuery
    CSS
    函数装饰器
    函数
    模块和运算符
    前端编程基础
    MySQL优化指南-大表优化思路
    Linux命令find讲解
    LeetCode每日题解(0324)
    Kmeans算法的经典优化——mini-batch和Kmeans++
  • 原文地址:https://www.cnblogs.com/hsy1941/p/11361655.html
Copyright © 2011-2022 走看看