zoukankan      html  css  js  c++  java
  • OpenCV 轮廓方向

    //求轮廓的方向
    //第二个函数调用第一个
    void drawAxis(Mat&, Point, Point, Scalar, const float);
    double getOrientation(const vector<Point> &, Mat&);

    函数方法如下:

     1 void drawAxis(Mat& img, Point p, Point q, Scalar colour, const float scale = 0.2)
     2 {
     3     double angle = atan2((double)p.y - q.y, (double)p.x - q.x); // angle in radians
     4     double hypotenuse = sqrt((double)(p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x));
     5     // Here we lengthen the arrow by a factor of scale
     6     q.x = (int)(p.x - scale * hypotenuse * cos(angle));
     7     q.y = (int)(p.y - scale * hypotenuse * sin(angle));
     8     line(img, p, q, colour, 1, LINE_AA);
     9     // create the arrow hooks
    10     p.x = (int)(q.x + 9 * cos(angle + CV_PI / 4));
    11     p.y = (int)(q.y + 9 * sin(angle + CV_PI / 4));
    12     line(img, p, q, colour, 1, LINE_AA);
    13     p.x = (int)(q.x + 9 * cos(angle - CV_PI / 4));
    14     p.y = (int)(q.y + 9 * sin(angle - CV_PI / 4));
    15     line(img, p, q, colour, 1, LINE_AA);
    16 }
    17 double getOrientation(const vector<Point> &pts, Mat &img)
    18 {
    19     //Construct a buffer used by the pca analysis
    20     int sz = static_cast<int>(pts.size());
    21     Mat data_pts = Mat(sz, 2, CV_64F);
    22     for (int i = 0; i < data_pts.rows; i++)
    23     {
    24         data_pts.at<double>(i, 0) = pts[i].x;
    25         data_pts.at<double>(i, 1) = pts[i].y;
    26     }
    27     //Perform PCA analysis
    28     PCA pca_analysis(data_pts, Mat(), PCA::DATA_AS_ROW);
    29     //Store the center of the object
    30     Point cntr = Point(static_cast<int>(pca_analysis.mean.at<double>(0, 0)),
    31         static_cast<int>(pca_analysis.mean.at<double>(0, 1)));
    32     //Store the eigenvalues and eigenvectors
    33     vector<Point2d> eigen_vecs(2);
    34     vector<double> eigen_val(2);
    35     for (int i = 0; i < 2; i++)
    36     {
    37         eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
    38             pca_analysis.eigenvectors.at<double>(i, 1));
    39         eigen_val[i] = pca_analysis.eigenvalues.at<double>(i);
    40     }
    41     // Draw the principal components
    42     circle(img, cntr, 3, Scalar(255, 0, 255), 2);
    43     Point p1 = cntr + 0.02 * Point(static_cast<int>(eigen_vecs[0].x * eigen_val[0]), static_cast<int>(eigen_vecs[0].y * eigen_val[0]));
    44     Point p2 = cntr - 0.02 * Point(static_cast<int>(eigen_vecs[1].x * eigen_val[1]), static_cast<int>(eigen_vecs[1].y * eigen_val[1]));
    45     drawAxis(img, cntr, p1, Scalar(0, 255, 0), 1);
    46     drawAxis(img, cntr, p2, Scalar(255, 255, 0), 5);
    47     double angle = atan2(eigen_vecs[0].y, eigen_vecs[0].x); // orientation in radians
    48     return angle;
    49 }

    例子:

    #include "opencv2/core.hpp"
    #include "opencv2/imgproc.hpp"
    #include "opencv2/highgui.hpp"
    #include <iostream>
    using namespace std;
    using namespace cv;
    // Function declarations
    void drawAxis(Mat&, Point, Point, Scalar, const float);
    double getOrientation(const vector<Point> &, Mat&);
    void drawAxis(Mat& img, Point p, Point q, Scalar colour, const float scale = 0.2)
    {
        double angle = atan2((double)p.y - q.y, (double)p.x - q.x); // angle in radians
        double hypotenuse = sqrt((double)(p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x));
        // Here we lengthen the arrow by a factor of scale
        q.x = (int)(p.x - scale * hypotenuse * cos(angle));
        q.y = (int)(p.y - scale * hypotenuse * sin(angle));
        line(img, p, q, colour, 1, LINE_AA);
        // create the arrow hooks
        p.x = (int)(q.x + 9 * cos(angle + CV_PI / 4));
        p.y = (int)(q.y + 9 * sin(angle + CV_PI / 4));
        line(img, p, q, colour, 1, LINE_AA);
        p.x = (int)(q.x + 9 * cos(angle - CV_PI / 4));
        p.y = (int)(q.y + 9 * sin(angle - CV_PI / 4));
        line(img, p, q, colour, 1, LINE_AA);
    }
    double getOrientation(const vector<Point> &pts, Mat &img)
    {
        //Construct a buffer used by the pca analysis
        int sz = static_cast<int>(pts.size());
        Mat data_pts = Mat(sz, 2, CV_64F);
        for (int i = 0; i < data_pts.rows; i++)
        {
            data_pts.at<double>(i, 0) = pts[i].x;
            data_pts.at<double>(i, 1) = pts[i].y;
        }
        //Perform PCA analysis
        PCA pca_analysis(data_pts, Mat(), PCA::DATA_AS_ROW);
        //Store the center of the object
        Point cntr = Point(static_cast<int>(pca_analysis.mean.at<double>(0, 0)),
            static_cast<int>(pca_analysis.mean.at<double>(0, 1)));
        //Store the eigenvalues and eigenvectors
        vector<Point2d> eigen_vecs(2);
        vector<double> eigen_val(2);
        for (int i = 0; i < 2; i++)
        {
            eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
                pca_analysis.eigenvectors.at<double>(i, 1));
            eigen_val[i] = pca_analysis.eigenvalues.at<double>(i);
        }
        // Draw the principal components
        circle(img, cntr, 3, Scalar(255, 0, 255), 2);
        Point p1 = cntr + 0.02 * Point(static_cast<int>(eigen_vecs[0].x * eigen_val[0]), static_cast<int>(eigen_vecs[0].y * eigen_val[0]));
        Point p2 = cntr - 0.02 * Point(static_cast<int>(eigen_vecs[1].x * eigen_val[1]), static_cast<int>(eigen_vecs[1].y * eigen_val[1]));
        drawAxis(img, cntr, p1, Scalar(0, 255, 0), 1);
        drawAxis(img, cntr, p2, Scalar(255, 255, 0), 5);
        double angle = atan2(eigen_vecs[0].y, eigen_vecs[0].x); // orientation in radians
        return angle;
    }
    int main()
    {
        
        Mat src = imread("4.png");
        Mat gray;
        cvtColor(src, gray, COLOR_BGR2GRAY);
        // Convert image to binary
        Mat bw;
        threshold(gray, bw, 50, 255, THRESH_BINARY | THRESH_OTSU);
        // Find all the contours in the thresholded image
        vector<vector<Point> > contours;
        findContours(bw, contours, RETR_LIST, CHAIN_APPROX_NONE);
        for (size_t i = 0; i < contours.size(); i++)
        {
            
            drawContours(src, contours, i, Scalar(0, 50, 220), 2);
            // Find the orientation of each shape
            getOrientation(contours[i], src);
        }
        imshow("output", src);
        waitKey();
        return 0;
    }

        

  • 相关阅读:
    Javascript 入门 document
    JavaScript 入门 (一)
    Python 之 Json序列化嵌套类
    [20171113]修改表结构删除列相关问题3.txt
    [20171113]修改表结构删除列相关问题2.txt
    [20171113]修改表结构删除列相关问题.txt
    [20171110]_allow_read_only_corruption参数.txt
    [20171107]dbms_shared_pool.pin补充.txt
    [20171107]dbms_shared_pool.pin.txt
    [20171106]修改show spparameter的显示宽度.txt
  • 原文地址:https://www.cnblogs.com/hsy1941/p/11404671.html
Copyright © 2011-2022 走看看