zoukankan      html  css  js  c++  java
  • 线段树模板

    线段树主要用于区间记录信息(如区间和、最大最小值等),首先是建树:

    这里以求和为例:

    const int MAXM=50000;          //定义 MAXM 为线段最大长度
    
    int a[MAXM+5],st[(MAXM<<2)+5];    // a 数组为 main 函数中读入的内容,st 数组为需要查询的数的信息(如和、最值等),树的空间大小为线段最大长度的四倍
    
    void build(int o,int l,int r){    //传入的参数为 o:当前需要建立的结点;l:当前需要建立的左端点;r:当前需要建立的右端点
        if(l==r)st[o]=a[l];      //当左端点等于右端点即建立叶子结点时,直接给数组信息赋值
        else{
            int m=l+((r-l)>>1);      // m 为中间点,左儿子结点为 [l,m] ,右儿子结点为 [m+1,r];
            build(o<<1,l,m);        //构建左儿子结点
            build((o<<1)|1,m+1,r);     //构建右儿子结点
            st[o]=st[o<<1]+st[(o<<1)|1];  //递归返回时用儿子结点更新父节点,此处可进行更新最大值、最小值、区间和等操作
        }
    }
    
    {                       //在 main 函数中的语句
            build(1,1,n);
    }

    然后是比较简单的单点修改以及区间查询操作:

    单点修改:

    void update(int o,int l,int r,int ind,int ans){  //o、l、r为当前更新到的结点、左右端点,ind为需要修改的叶子结点左端点,ans为需要修改成的值;
        if(l==r){                      //若当前更新点的左右端点相等即到叶子结点时,直接更新信息并返回
            st[o]=ans;
            return;
        }
        int m=l+((r-l)>>1);
        if(ind<=m){                      //若需要更新的叶子结点在当前结点的左儿子结点的范围内,则递归更新左儿子结点,否则更新右儿子结点
            update(o<<1,l,m,ind,ans);
        }
        else{
            update((o<<1)|1,m+1,r,ind,ans);
        }
        st[o]=max(st[o<<1],st[(o<<1)|1]);//递归回之后用儿子结点更新父节点(此处是区间最大值)
    }
    
    {                               //在main函数中的语句
            update(1,1,n,ind,ans);
    }

    对应单点修改的区间查询:

    int query(int o,int l,int r,int ql,int qr){      //ql、qr为需要查询的区间左右端点
        if(ql>r||qr<l) return -1;              //若当前结点和需要查找的区间不相交,则返回一个对于区间查询无关的值(如求和时返回0,求最大值时返回-1等)
        if(ql<=l&&qr>=r) return st[o];        //若当前结点的区间被需要查询的区间覆盖,则返回当前结点的信息
        int m=l+((r-l)>>1);
        int p1=query(o<<1,l,m,ql,qr),p2=query((o<<1)|1,m+1,r,ql,qr);  //p1为查询左儿子结点得到的信息,p2为查询右儿子结点得到的信息
        return max(p1,p2);    //综合两个儿子结点的信息并返回
    }
    
    {    //main函数中的语句
            printf("%d
    ",query(1,1,n,a,b));
    }

    然后是线段数的区间修改以及相应的查询:

    区间修改用到了lazy的思想,即当一个区间需要更新时,只递归更新到那一层结点,并将其下层结点所需要更新的信息保存在数组中,然后返回,只有当下次遍历到那个结点(更新过程中或查询过程中),才将那个结点的修改信息传递下去,这样就避免了区间修改的每个值的修改

    区间修改(包括区间加值和区间赋值)及相应查询:

    区间加值:

    void pushup(int o){          //pushup函数,该函数本身是将当前结点用左右子节点的信息更新,此处求区间和,用于update中将结点信息传递完返回后更新父节点
        st[o]=st[o<<1]+st[o<<1|1];
    }
    
    void pushdown(int o,int l,int r){  //pushdown函数,将o结点的信息传递到左右子节点上
        if(add[o]){             //当父节点有更新信息时才向下传递信息
            add[o<<1]+=add[o];      //左右儿子结点均加上父节点的更新值
            add[o<<1|1]+=add[o];
            int m=l+((r-l)>>1);
            st[o<<1]+=add[o]*(m-l+1);  //左右儿子结点均按照需要加的值总和更新结点信息
            st[o<<1|1]+=add[o]*(r-m);
            add[o]=0;                //信息传递完之后就可以将父节点的更新信息删除
        }
    }
    
    void update(int o,int l,int r,int ql,int qr,int addv){  //ql、qr为需要更新的区间左右端点,addv为需要增加的值
        if(ql<=l&&qr>=r){                      //与单点更新一样,当当前结点被需要更新的区间覆盖时
            add[o]+=addv;                      //更新该结点的所需更新信息
            st[o]+=addv*(r-l+1);                //更新该结点信息
            return;                    //根据lazy思想,由于不需要遍历到下层结点,因此不需要继续向下更新,直接返回
        }
    
        pushdown(o,l,r);                  //将当前结点的所需更新信息传递到下一层(其左右儿子结点)
        int m=l+((r-l)>>1);
        if(ql<=m)update(o<<1,l,m,ql,qr,addv);     //当需更新区间在当前结点的左儿子结点内,则更新左儿子结点
        if(qr>=m+1)update(o<<1|1,m+1,r,ql,qr,addv);   //当需更新区间在当前结点的右儿子结点内,则更新右儿子结点
        pushup(o);                  //递归回上层时一步一步更新回父节点
    }
    
    ll query(int o,int l,int r,int ql,int qr){    //ql、qr为需要查询的区间
        if(ql<=l&&qr>=r) return st[o];      //若当前结点覆盖区间即为需要查询的区间,则直接返回当前结点的信息
        pushdown(o,l,r);                  //将当前结点的更新信息传递给其左右子节点
        int m=l+((r-l)>>1);
        ll ans=0;                      //所需查询的结果
        if(ql<=m)ans+=query(o<<1,l,m,ql,qr);     //若所需查询的区间与当前结点的左子节点有交集,则结果加上查询其左子节点的结果
        if(qr>=m+1)ans+=query(o<<1|1,m+1,r,ql,qr); //若所需查询的区间与当前结点的右子节点有交集,则结果加上查询其右子节点的结果
       return ans; 
    }

    区间改值(其实只有pushdow函数和update中修改部分与区间加值不同):

    void pushup(int o){
         st[o]=st[o<<1]+st[o<<1|1];
     }
    
     void pushdown(int o,int l,int r){  //pushdown和区间加值不同,改值时修改结点信息只需要对修改后的信息求和即可,不用加上原信息
         if(change[o]){
             int c=change[o];
             change[o<<1]=c;
             change[o<<1|1]=c;
             int m=l+((r-l)>>1);
             st[o<<1]=(m-l+1)*c;
             st[o<<1|1]=(r-m)*c;
             change[o]=0;
         }
     }
    
     void update(int o,int l,int r,int ql,int qr,int c){
         if(ql<=l&&qr>=r){         //同样更新结点信息和区间加值不同
             change[o]=c;
             st[o]=(r-l+1)*c;
             return;
         }
    
         pushdown(o,l,r);
         int m=l+((r-l)>>1);
         if(ql<=m)update(o<<1,l,m,ql,qr,c);
         if(qr>=m+1)update(o<<1|1,m+1,r,ql,qr,c);
         pushup(o);
     }
    
     int query(int o,int l,int r,int ql,int qr){
         if(ql<=l&&qr>=r) return st[o];
         pushdown(o,l,r);
         int m=l+((r-l)>>1);
         int ans=0;
         if(ql<=m)ans+=query(o<<1,l,m,ql,qr);
         if(qr>=m+1)ans+=query(o<<1|1,m+1,r,ql,qr);
         return ans;
     }
  • 相关阅读:
    最近几个月的感想
    Fortran 入门——C#调用Fortran DLL
    Fortran 入门——函数调用
    JQueryAjax初体验和一点感想
    【HDU】1796 How many integers can you find
    【SGU】476 Coach's Trouble
    【HDU】2204 Eddy's爱好
    【POJ】1091 跳蚤
    【URAL】1091 Tmutarakan Exams
    【ZOJ】2836 Number Puzzle
  • 原文地址:https://www.cnblogs.com/ht008/p/6819855.html
Copyright © 2011-2022 走看看