zoukankan      html  css  js  c++  java
  • CNN 理论

    我是半路出生的,看的理论方面的博客做个介绍:https://www.cnblogs.com/pinard/p/6483207.html

    https://blog.csdn.net/cxmscb/article/details/71023576

     看理论的话第一个博客就够了,第一个博主关于这方面的博客文章我前前后后看了大概十几遍吧,写的很好,能把我这样的渣渣带入门,我想大家也是可以的

    实践的话,建议大家去看极客http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html

    这个是MNIST机器学习入门的代码

    "导入数据集"
    import  tensorflow.examples.tutorials.mnist.input_data as input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot = True)
    
    import  tensorflow as tf
    #  "占位符"
    x = tf.placeholder(tf.float32,[None, 784])
    
    # 权重和偏置量
    W =  tf.Variable(tf.zeros([784, 10 ]))
    b = tf.Variable(tf.zeros([10]))
    
    # softmax 模型
    y = tf.nn.softmax(tf.matmul(x, W) + b)
    
    # 交叉熵
    y_ = tf.placeholder("float",[None, 10])
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
    
    # 梯度下降算法以0.01的学习速率最小化交叉熵
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    #初始化变量
    init = tf.global_variables_initializer()
    
    # 启动模型
    sess = tf.Session()
    sess.run(init)
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    
    
    
    correct_prediction = tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    print(sess.run(accuracy,feed_dict={x: mnist.test.images,y_: mnist.test.labels }))
    # 0.9042
    

      深入MNIST

    # -*- coding:utf-8-*-
    import  tensorflow.examples.tutorials.mnist.input_data as input_data
    mnist = input_data.read_data_sets("MNIST_data", one_hot = True)
    
    import  tensorflow as tf
    sess = tf.InteractiveSession()
    
    x = tf.placeholder("float", shape=[None, 784])
    y_ = tf.placeholder("float", shape=[None, 10])
    
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    
    sess.run(tf.global_variables_initializer())
    
    y = tf.nn.softmax(tf.matmul(x, W) + b)
    cross_entropy = - tf.reduce_sum(y_ * tf.log(y))
    
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    
    for i in range(10000):
        batch = mnist.train.next_batch(90)
        train_step.run(feed_dict= {x: batch[0],y_:batch[1]})
    
    correct_predict = tf.equal(tf.argmax(y,1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_predict,"float"))
    print(accuracy.eval(feed_dict={x: mnist.test.images,y_:mnist.test.labels}))
    #0.9084   50  1000
    #0.9072   60   1000
    #0.908   70   1000
    #0.9135  80  1000
    #0.9151   84 1000
    #0.9175  85  1000
    #0.9142  86  1000
    #0.9133  90  1000
    #0.9026 100  1000
    
    #0.098       850  10000
    #0.9245      85 10000
    #0.924   90 10000
    

      

     基于mnist的CNN

    # -*- coding:utf-8-*-
    import  tensorflow.examples.tutorials.mnist.input_data as input_data
    mnist = input_data.read_data_sets("MNIST_data", one_hot = True)
    
    import  tensorflow as tf
    sess = tf.InteractiveSession()
    x = tf.placeholder("float", shape=[None, 784])
    y_ = tf.placeholder("float", shape=[None, 10])
    
    # 权重和偏置量初始化函数
    def weight_variable(shape):
        initial = tf.truncated_normal(shape,stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1,shape=shape)
        return tf.Variable(initial)
    
    # 卷积和池化
    def conv2d(x,W):
        return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding="SAME")
    
    def max_pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
    
    # 第一层卷积
    W_conv1 = weight_variable([5,5,1,32])
    b_conv1 = bias_variable([32])
    x_image =tf.reshape(x, [-1, 28, 28, 1])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    # 第二层卷积
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    # 密集连接层
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
    
    # dropout
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    # 输出层
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    sess.run(tf.global_variables_initializer())
    for i in range(2000):
        batch = mnist.train.next_batch(50)
        if i%100 == 0:
            train_accuracy = accuracy.eval(feed_dict={x: batch[0],y_:batch[1],keep_prob:1.0})
            print("step %d,training accuracy %g "%(i, train_accuracy))
        train_step.run(feed_dict={x: batch[0],y_:batch[1],keep_prob: 0.5})
    
    print("test accuracy %g" % accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))
    

      

    以上代码都是可以运行的,但是还是建议大家自己去写一次,理解各种函数的意义,将理论和事件结合起来

  • 相关阅读:
    Netty
    HttpClient 该知道一些概念
    Hibernate QBC 简单收集
    IUAP--单点登录
    js图片压缩和上传并显示
    vue移动端项目
    js自定义滚动条
    mysql5.7以上版本安装
    学习webpack
    学习es6
  • 原文地址:https://www.cnblogs.com/html-css-js/p/8834873.html
Copyright © 2011-2022 走看看