zoukankan      html  css  js  c++  java
  • CF1096.F. Inversion Expectation(树状数组)

    A permutation of size n is an array of size n such that each integer from 1 to n occurs exactly once in this array. An inversion in a permutation p is a pair of indices (i,j) such that i>j and ai<aj. For example, a permutation [4,1,3,2] contains 4 inversions: (2,1), (3,1), (4,1), (4,3)

    .

    You are given a permutation p

    of size n. However, the numbers on some positions are replaced by 1. Let the valid permutation be such a replacement of 1 in this sequence back to numbers from 1 to n in such a way that the resulting sequence is a permutation of size n

    .

    The given sequence was turned into a valid permutation randomly with the equal probability of getting each valid permutation.

    Calculate the expected total number of inversions in the resulting valid permutation.

    It can be shown that it is in the form of PQ

    where P and Q are non-negative integers and Q0. Report the value of PQ1(mod998244353)

    .

    Input

    The first line contains a single integer n

    (1n2105

    ) — the length of the sequence.

    The second line contains n

    integers p1,p2,,pn (1pin, pi0

    ) — the initial sequence.

    It is guaranteed that all elements not equal to 1

    are pairwise distinct.

    Output

    Print a single integer — the expected total number of inversions in the resulting valid permutation.

    It can be shown that it is in the form of PQ

    where P and Q are non-negative integers and Q0. Report the value of PQ1(mod998244353)

    .

    Examples
    Input
    3
    3 -1 -1
    
    Output
    499122179
    
    Input
    2
    1 2
    
    Output
    0
    
    Input
    2
    -1 -1
    
    Output
    499122177
    

    题意:给定一个数组,是一个N的排列,其中有些未知没有填数,让你补全,问逆序对的期望是多少。

    思路:就是枚举几种情况就好了。

    #include<bits/stdc++.h>
    #define rep(i,a,b) for(int i=a;i<=b;i++)
    #define ll long long
    using namespace std;
    const int maxn=1000010;
    const int Mod=998244353;
    int vis[maxn],a[maxn],b[maxn],cnt,sum[maxn],fac[maxn],ans,v,tot,N;
    int qpow(int a,int x){
        int res=1; while(x){
            if(x&1) res=1LL*res*a%Mod;
            a=1LL*a*a%Mod; x>>=1;
        } return res;
    }
    void add(int x){ for(;x<=N;x+=(-x)&x) sum[x]++;}
    int query(int x){ int res=0; for(;x;x-=(-x)&x) res+=sum[x]; return res; }
    int main()
    {
        scanf("%d",&N);
        rep(i,1,N) {
            scanf("%d",&a[i]);
            if(a[i]!=-1) vis[a[i]]=1;
        }
        rep(i,1,N) if(!vis[i]) b[++cnt]=i; //空位
        sort(b+1,b+cnt+1);fac[0]=1; rep(i,1,cnt) fac[i]=1LL*fac[i-1]*i%Mod;
        rep(i,1,N){
            if(a[i]!=-1){
                int Less=query(a[i]);
                ans=(ans+1LL*(tot-Less)*fac[cnt]%Mod)%Mod; //已知+已知
                int pos=lower_bound(b+1,b+cnt+1,a[i])-b; pos--;
                ans=(ans+1LL*pos*(cnt-v)%Mod*fac[cnt-1]%Mod)%Mod; //已知+未知
                ans=(ans+1LL*(cnt-pos)*v%Mod*fac[cnt-1]%Mod)%Mod;//未知+已知
                tot++; add(a[i]);
            }
            else v++;
        }
        ans=(ans+1LL*cnt*(cnt-1)%Mod*fac[cnt]%Mod*qpow(4,Mod-2)%Mod)%Mod; //未知+未知
        fac[cnt]=qpow(fac[cnt],Mod-2);
        printf("%d
    ",1LL*ans*fac[cnt]%Mod);
        return 0;
    }
  • 相关阅读:
    Kernel parameter requirements ( Linux DB2)
    db2 backup export
    db2 活动日志激增的原因分析处理
    db2 应用的最常见状态(转)
    db2 reorg到底需要多少表空间(转)
    HDLM for AIX安装
    db lock
    db2 tablespaces table bufferpools reorgs
    AIX文件系统和存储部署(转)
    真正看网络代码
  • 原文地址:https://www.cnblogs.com/hua-dong/p/10202288.html
Copyright © 2011-2022 走看看