zoukankan      html  css  js  c++  java
  • CF1096.F. Inversion Expectation(树状数组)

    A permutation of size n is an array of size n such that each integer from 1 to n occurs exactly once in this array. An inversion in a permutation p is a pair of indices (i,j) such that i>j and ai<aj. For example, a permutation [4,1,3,2] contains 4 inversions: (2,1), (3,1), (4,1), (4,3)

    .

    You are given a permutation p

    of size n. However, the numbers on some positions are replaced by 1. Let the valid permutation be such a replacement of 1 in this sequence back to numbers from 1 to n in such a way that the resulting sequence is a permutation of size n

    .

    The given sequence was turned into a valid permutation randomly with the equal probability of getting each valid permutation.

    Calculate the expected total number of inversions in the resulting valid permutation.

    It can be shown that it is in the form of PQ

    where P and Q are non-negative integers and Q0. Report the value of PQ1(mod998244353)

    .

    Input

    The first line contains a single integer n

    (1n2105

    ) — the length of the sequence.

    The second line contains n

    integers p1,p2,,pn (1pin, pi0

    ) — the initial sequence.

    It is guaranteed that all elements not equal to 1

    are pairwise distinct.

    Output

    Print a single integer — the expected total number of inversions in the resulting valid permutation.

    It can be shown that it is in the form of PQ

    where P and Q are non-negative integers and Q0. Report the value of PQ1(mod998244353)

    .

    Examples
    Input
    3
    3 -1 -1
    
    Output
    499122179
    
    Input
    2
    1 2
    
    Output
    0
    
    Input
    2
    -1 -1
    
    Output
    499122177
    

    题意:给定一个数组,是一个N的排列,其中有些未知没有填数,让你补全,问逆序对的期望是多少。

    思路:就是枚举几种情况就好了。

    #include<bits/stdc++.h>
    #define rep(i,a,b) for(int i=a;i<=b;i++)
    #define ll long long
    using namespace std;
    const int maxn=1000010;
    const int Mod=998244353;
    int vis[maxn],a[maxn],b[maxn],cnt,sum[maxn],fac[maxn],ans,v,tot,N;
    int qpow(int a,int x){
        int res=1; while(x){
            if(x&1) res=1LL*res*a%Mod;
            a=1LL*a*a%Mod; x>>=1;
        } return res;
    }
    void add(int x){ for(;x<=N;x+=(-x)&x) sum[x]++;}
    int query(int x){ int res=0; for(;x;x-=(-x)&x) res+=sum[x]; return res; }
    int main()
    {
        scanf("%d",&N);
        rep(i,1,N) {
            scanf("%d",&a[i]);
            if(a[i]!=-1) vis[a[i]]=1;
        }
        rep(i,1,N) if(!vis[i]) b[++cnt]=i; //空位
        sort(b+1,b+cnt+1);fac[0]=1; rep(i,1,cnt) fac[i]=1LL*fac[i-1]*i%Mod;
        rep(i,1,N){
            if(a[i]!=-1){
                int Less=query(a[i]);
                ans=(ans+1LL*(tot-Less)*fac[cnt]%Mod)%Mod; //已知+已知
                int pos=lower_bound(b+1,b+cnt+1,a[i])-b; pos--;
                ans=(ans+1LL*pos*(cnt-v)%Mod*fac[cnt-1]%Mod)%Mod; //已知+未知
                ans=(ans+1LL*(cnt-pos)*v%Mod*fac[cnt-1]%Mod)%Mod;//未知+已知
                tot++; add(a[i]);
            }
            else v++;
        }
        ans=(ans+1LL*cnt*(cnt-1)%Mod*fac[cnt]%Mod*qpow(4,Mod-2)%Mod)%Mod; //未知+未知
        fac[cnt]=qpow(fac[cnt],Mod-2);
        printf("%d
    ",1LL*ans*fac[cnt]%Mod);
        return 0;
    }
  • 相关阅读:
    数据库事务之不可重复读
    数据库事务与脏读
    图结构代码实现
    哈希表与散列函数
    数据库表设计与视图
    B树和B+树
    java之字符串中查找字串的常见方法
    剑指 Offer 15. 二进制中1的个数——JS
    剑指 Offer 03. 数组中重复的数字——JS
    算法设计与分析——排序
  • 原文地址:https://www.cnblogs.com/hua-dong/p/10202288.html
Copyright © 2011-2022 走看看