zoukankan      html  css  js  c++  java
  • HDU

    pro:给定一枚蛋糕,蛋糕上某个位置有个草莓,寿星在上面切了N刀,最后寿星会吃含有草莓的那一块蛋糕,问他的蛋糕占总蛋糕的面积比。

    sol:显然需要半平面交求含有蛋糕的那一块,然后有圆弧,不太方便求交。 所以我们可以直线构成的边界,求出平面交; 然后用这个多边形去和圆求交。

    (百度了一下很多人都没过,好像是这题很卡精度,反正我每个地方都改过,还是WA,大概wa了4个小时了,要不以后再回来改。

    当然也不排除有其他问题。

    #include<bits/stdc++.h>
    #define rep(i,a,b) for(int i=a;i<=b;i++)
    using namespace std;
    const int maxn=200010;
    const double eps=1e-12;
    const double pi=acos(-1.0);
    struct point{
        double x,y;
        point(){}
        point(double xx,double yy):x(xx),y(yy){}
    };
    struct Circle{
        point c; double r;
    };
    struct line{
        point a,b;//起点
        point p;//起点到终点的向量
        double angle;
    };
    double det(point a,point b){ return a.x*b.y-a.y*b.x;}
    double dot(point a,point b){ return a.x*b.x+a.y*b.y;}
    point operator *(point a,double t){ return point(a.x*t,a.y*t);}
    point operator +(point a,point b){ return point(a.x+b.x,a.y+b.y);}
    point operator -(point a,point b){ return point(a.x-b.x,a.y-b.y);}
    double Length(point A){return sqrt(dot(A,A));}
    double getangle(point a){ return atan2(a.y,a.x);}
    double getangle(line a){ return getangle(a.p);}
    int dcmp(double x){
        if(fabs(x)<eps) return 0;  if(x<0) return -1; return 1;
    }
    double TriAngleCircleInsection(Circle C, point A, point B)
    {
        point OA=A-C.c,OB=B-C.c;
        point BA=A-B, BC=C.c-B;
        point AB=B-A, AC=C.c-A;
        double DOA=Length(OA),DOB=Length(OB),DAB=Length(AB),r=C.r;
        if(dcmp(det(OA,OB))==0) return 0; //,三点一线,不构成三角形
        if(dcmp(DOA-C.r)<0&&dcmp(DOB-C.r)<0) return det(OA,OB)*0.5; //内部
        else if(DOB<r&&DOA>=r) //一内一外
        {
            double x=(dot(BA,BC)+sqrt(r*r*DAB*DAB-det(BA,BC)*det(BA,BC)))/DAB;
            double TS=det(OA,OB)*0.5;
            return asin(TS*(1-x/DAB)*2/r/DOA)*r*r*0.5+TS*x/DAB;
        }
        else if(DOB>=r&&DOA<r)// 一外一内
        {
            double y=(dot(AB,AC)+sqrt(r*r*DAB*DAB-det(AB,AC)*det(AB,AC)))/DAB;
            double TS=det(OA,OB)*0.5;
            return asin(TS*(1-y/DAB)*2/r/DOB)*r*r*0.5+TS*y/DAB;
        }
        else if(fabs(det(OA,OB))>=r*DAB||dot(AB,AC)<=0||dot(BA,BC)<=0)//
        {
            if(dot(OA,OB)<0){
                if(det(OA,OB)<0) return (-acos(-1.0)-asin(det(OA,OB)/DOA/DOB))*r*r*0.5;
                else  return ( acos(-1.0)-asin(det(OA,OB)/DOA/DOB))*r*r*0.5;
            }
            else      return asin(det(OA,OB)/DOA/DOB)*r*r*0.5; //小于90度,以为asin对应的区间是[-90度,90度]
        }
        else //弧+三角形
        {
            double x=(dot(BA,BC)+sqrt(r*r*DAB*DAB-det(BA,BC)*det(BA,BC)))/DAB;
            double y=(dot(AB,AC)+sqrt(r*r*DAB*DAB-det(AB,AC)*det(AB,AC)))/DAB;
            double TS=det(OA,OB)*0.5;
            return (asin(TS*(1-x/DAB)*2/r/DOA)+asin(TS*(1-y/DAB)*2/r/DOB))*r*r*0.5 + TS*((x+y)/DAB-1);
        }
    }
    point llintersect(line A,line B)
    {
        point C=A.a-B.a;
        double t=det(C,B.p)/det(B.p,A.p);
        return A.a+A.p*t;
    }
    point s[maxn]; line t[maxn],q[maxn];
    bool cmp(line a,line b){
        double A=getangle(a),B=getangle(b);
        point t=(b.a+b.p)-a.a;
        if(fabs(A-B)<eps) return det(a.p,t)>=0.0;
        return A<B;
    }
    bool onright(line P,line a,line b)
    {
        point o=llintersect(a,b);
        point Q=o-P.a;
        return det(Q,P.p)>0; //如果同一直线上不能相互看到,则>=0
    }
    int tail,head;
    void halfplaneintersect(int N)
    {
        sort(t+1,t+N+1,cmp);
        int tot=0;
        rep(i,1,N-1) {
            if(fabs(getangle(t[i])-getangle(t[i+1]))>eps)
              t[++tot]=t[i];
        }
        t[++tot]=t[N]; head=tail=0;
        rep(i,1,tot){
            while(tail>head+1&&onright(t[i],q[tail],q[tail-1])) tail--;
            while(tail>head+1&&onright(t[i],q[head+1],q[head+2])) head++;
            q[++tail]=t[i];
        }
        while(tail>head+1&&onright(t[head+1],q[tail],q[tail-1])) tail--;
    }
    point a[maxn],A,B;
    int main()
    {
        int N,T,Ca=0; Circle C; double x1,y1,x2,y2;
        scanf("%d",&T);
        while(T--){
            scanf("%lf%d",&C.r,&N); C.c.x=0, C.c.y=0;
            rep(i,1,N) scanf("%lf%lf%lf%lf",&t[i].a.x,&t[i].a.y,&t[i].b.x,&t[i].b.y);
            N++; t[N].a=point(-10000,-10000); t[N].b=point(10000,-10000);
            N++; t[N].a=point(10000,-10000); t[N].b=point(10000,10000);
            N++; t[N].a=point(10000,10000); t[N].b=point(-10000,10000);
            N++; t[N].a=point(-10000,10000); t[N].b=point(-10000,-10000);
            point cr;
            scanf("%lf%lf",&cr.x,&cr.y);
            rep(i,1,N){ //保证草莓在刀的左边。
                point p=t[i].b-t[i].a;
                point k=cr-t[i].a;
                if(det(p,k)<0) swap(t[i].a,t[i].b);
                t[i].p=t[i].b-t[i].a;
            }
            halfplaneintersect(N);
            double ans=0,sum=pi*C.r*C.r;
            q[tail+1]=q[head+1]; q[tail+2]=q[head+2];
            rep(i,head+1,tail){
                //cout<<q[i].a.x<<" "<<q[i].a.y<<" "<<q[i].a.x+q[i].p.x<<" "<<q[i].a.y+q[i].p.y<<endl;
                ans+=TriAngleCircleInsection (C,llintersect(q[i],q[i+1]),llintersect(q[i+1],q[i+2]));
            }
            printf("Case %d: %.5lf%%
    ",++Ca,ans*100/sum);
        }
        return 0;
    }
  • 相关阅读:
    iOS多线程_06_GCD其它用法
    iOS多线程_05_线程间通信NSThread/GCD
    iOS多线程_04_GCD
    iOS多线程_03_Block
    iOS多线程_02_多线程的安全问题
    iOS多线程_01_简介和NSThread
    shell 根据端口号输出所有的pid
    【java核心36讲】接口和抽象类的区别
    CSS布局
    CSS基础
  • 原文地址:https://www.cnblogs.com/hua-dong/p/10680026.html
Copyright © 2011-2022 走看看