pro:有一个长度为N的数组a[i],要求选择k[i]>0,使得b[i]=a[i]^k[i]%M中出现的不同数最多。N<=200, M<=1e9;
sol:a^x%p的个数的有限的,但是全部求出来再二分匹配显然是不可取的。 但是考虑到二分匹配的特殊性,对于每个a[],最多求min(N,全部)个即可满足条件。
min(N),是因为其他N-1个数最多匹配N-1个,所以无论其他N-1个怎么匹配,对于当前数总能找到未匹配的去配对。
由于M的范围较大,对于每个a[],我们得到N个数b[],排序去重,离散。 然后跑匈牙利。
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; const int maxn=201; int Laxt[maxn],Next[100010],To[100010]; int link[maxn*maxn],cnt,vis[maxn*maxn]; int a[maxn*maxn],tot,T; vector<int>G[210]; void add(int u,int v){ Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; } bool dfs(int u) { for(int i=Laxt[u];i;i=Next[i]){ if(vis[To[i]]==T) continue; vis[To[i]]=T; if(!link[To[i]]||dfs(link[To[i]])){ link[To[i]]=u; return true; } } return false; } int main() { int N,M,x; while(~scanf("%d%d",&N,&M)){ rep(i,1,N) G[i].clear(); rep(i,1,N){ scanf("%d",&x); int t=x%M,c=N; while(c--){ G[i].push_back(t); t=1LL*t*x%M; } sort(G[i].begin(),G[i].end()); int tot=unique(G[i].begin(),G[i].end())-G[i].begin(); G[i].resize(tot); } tot=0; rep(i,1,N) for(int j=0;j<G[i].size();j++) a[++tot]=G[i][j]; sort(a+1,a+tot+1); tot=unique(a+1,a+tot+1)-(a+1); rep(i,1,N) Laxt[i]=0; cnt=0; rep(i,1,tot) link[i]=0; rep(i,1,N) { for(int j=0;j<G[i].size();j++){ int t=G[i][j]; int pos=lower_bound(a+1,a+tot+1,t)-a; add(i,pos); } } int ans=0; rep(i,1,N){ T++; if(dfs(i)) ans++; } printf("%d ",ans); } return 0; }