In how many ways can you choose k elements out of n elements, not taking order into account?
Write a program to compute this number.
Input
The input will contain one or more test cases.
Each test case consists of one line containing two integers n (n >= 1) and k (0 <= k <= n).
Input is terminated by two zeroes for n and k.
Output
For each test case, print one line containing the required number. This number will always fit into an integer, i.e. it will be less than 2^31.
Sample Input
4 2
10 5
49 6
0 0
Sample Output
6
252
13983816
之前遇到的组合数都稍微复杂一点,所以习惯用唯一分解来解决。这道题就是纠结了一下,还是懒得写唯一分解了,麻烦。
#include<cstdio> #include<cstdlib> #include<iostream> #include<math.h> #include<algorithm> using namespace std; int main() { long long n,m; long long ans; while(cin>>n>>m) { if(n==0) return 0; if(n-m<m) m=n-m; ans=1; for(int i=1;i<=m;i++) ans=ans*(n-i+1)/i;//不过先乘后除会不会超出longlong呢??? cout<<ans<<endl; } return 0; }假如先乘法感觉有数据会超吧,怎么处理呢???求大神指教。