zoukankan      html  css  js  c++  java
  • 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西)

    当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环

    (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP

    可以将时间复杂度缩减到O(N)

    O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推

    斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等式等数学方法

    在所有要判断的子状态中迅速做出判断,所以这里的优化其实是省去了枚举i的子状态的循环,几乎就是直接把最优的子状态找出来了

    其中四边形不等式优化是用数组s边跑边求最优的子状态,例如用s[i][j]保存dp[i][j]的最优子状态

    斜率优化的话是将后面可能用到的子状态放到队列中,要求的当前状态的最优状态就是队首元素q[head]

    另外,网上见到很多用二分+DP解斜率优化的问题。

    以dp求最小值为例:

    主要的解题步骤就是先写出dp的状态转移方程,然后选取两个子状态p,q

    假设p < q而决策q比p更好,求出斜率不等式,然后就可以写了

    至于经常有题目控制子决策的范围什么的(比如控制区间长度,或者控制分组的组数),就需要具体情况具体分析

    1  HDU 1300 Pearls

    最最最简单的斜率DP优化的题,就算不用优化,O(N^2)的算法也可以AC

    这题绝壁是最最最适合入门的斜率DP的题,我发誓!!!

    版本一:(O(N^2))

    #define mem(a,x) memset(a,x,sizeof(a))
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<stack>
    #include<cmath>
    #include<map>
    #include<stdlib.h>
    #include<cctype>
    #include<string>
    #define Sint(n) scanf("%d",&n)
    #define Sll(n) scanf("%I64d",&n)
    #define Schar(n) scanf("%c",&n)
    #define Schars(s) scanf("%s",s) 
    #define Sint2(x,y) scanf("%d %d",&x,&y)
    #define Sll2(x,y) scanf("%I64d %I64d",&x,&y)
    #define Pint(x) printf("%d",x)
    #define Pllc(x,c) printf("%I64d%c",x,c)
    #define Pintc(x,c) printf("%d%c",x,c)
    using namespace std;
    typedef long long ll;
    /*
        dp[i]表示买前i种珍珠的最少花费
        
        dp[i] = min(dp[j] + (sum[i] - sum[j] + 10)*w[i])
        其中sum[i]-sum[j]表示第j+1种珍珠到第i种珍珠所需的数量
        w[i]表示第i种珍珠的价值
         
    */
    const int N = 111;
    int w[N],dp[N],sum[N];
    int main()
    {
        int T;Sint(T);
        while (T--)
        {
            int n;Sint(n);
            for (int i = 1,x;i <= n;++i)
            {
                Sint2(x,w[i]);
                sum[i] = sum[i-1] + x;
            }
            dp[1] = (sum[1]+10)*(w[1]);
            for (int i = 2;i <= n;++i)
            {
                dp[i] = dp[i-1] + (sum[i]-sum[i-1]+10)*w[i];
                for (int j = 0;j < i-1;++j)
                {
                    dp[i] = min(dp[i],dp[j] + (sum[i]-sum[j]+10)*w[i]);
                }
            }
            Pintc(dp[n],'
    ');
        }
        return 0;
    }
    View Code

    当做出暴力DP版本之后,只需再多考虑一步就可以变成斜率优化DP

    对于状态转移方程dp[i] = dp[j] + (sum[i]-sum[j]+10)*w[i]

    考虑 k < j < i 且假设 i状态由j状态转移得到比由k状态转移得到更优

    即:dp[j] + (sum[i]-sum[j]+10)*w[i] <= dp[k] + (sum[i] - sum[k] + 10)*w[i]

    (这里取小于号是因为dp保存的是最小花费,花费越小越好,取等是因为j比k大,所以就算k,j一样优也选j)

    这个不等式化简之后就是

    dp[j] - dp[k] <= w[i]*(sum[j]-sum[k])

    这里的w[i]满足单调递增

    有了上面的不等式和单调条件就可以斜率优化了,主要做法就是利用单调队列维护满足的点

    比如j状态优于k状态,就可以将k永远的剔除了

    具体对于子状态的维护见代码里面有2个对队列进行的删除的操作,一个是在求dp[i]时在队首删除

    一个是在将状态i加入队列时在队尾删除的操作

    版本二:(O(N))

    #define mem(a,x) memset(a,x,sizeof(a))
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<stack>
    #include<cmath>
    #include<map>
    #include<stdlib.h>
    #include<cctype>
    #include<string>
    #define Sint(n) scanf("%d",&n)
    #define Sll(n) scanf("%I64d",&n)
    #define Schar(n) scanf("%c",&n)
    #define Schars(s) scanf("%s",s) 
    #define Sint2(x,y) scanf("%d %d",&x,&y)
    #define Sll2(x,y) scanf("%I64d %I64d",&x,&y)
    #define Pint(x) printf("%d",x)
    #define Pllc(x,c) printf("%I64d%c",x,c)
    #define Pintc(x,c) printf("%d%c",x,c)
    using namespace std;
    typedef long long ll;
    /*
        dp[i]表示买前i种珍珠的最少花费
        
        dp[i] = min(dp[j] + (sum[i] - sum[j] + 10)*w[i])
        其中sum[i]-sum[j]表示第j+1种珍珠到第i种珍珠所需的数量
        w[i]表示第i种珍珠的价值
        
        dp[j] - dp[k] <= w[i]*(sum[j]-sum[k])
        The qualities of the classes (and so the prices) are given in ascending order.
        So w[i]单增 --斜率DP 
    */
    const int N = 111;
    int w[N],dp[N],sum[N];
    int q[N];
    int DP(int i,int j)
    {
        return dp[j] + (sum[i]-sum[j]+10)*w[i];
    }
    int dy(int i,int j)
    {
        return dp[i]-dp[j];
    }
    int dx(int i,int j)
    {
        return sum[i]-sum[j];
    }
    int main()
    {
        int T;Sint(T);
        while (T--)
        {
            int n;Sint(n);
            for (int i = 1,x;i <= n;++i)
            {
                Sint2(x,w[i]);
                sum[i] = sum[i-1] + x;
        }
            int head = 0,tail = 0;
            q[tail++] = 0;
            for (int i = 1;i <= n;++i)
            {
                while (head+1<tail&&dy(q[head+1],q[head])<=w[i]*dx(q[head+1],q[head])) ++head;
                dp[i] = DP(i,q[head]);
                while (head+1<tail&&dy(i,q[tail-1])*dx(q[tail-1],q[tail-2])<=dy(q[tail-1],q[tail-2])*dx(i,q[tail-1])) --tail;
                q[tail++] = i;
            }
            Pintc(dp[n],'
    ');
        }
        return 0;
    }
    View Code

     

    POJ 1260 Pearls   和上面一题一样的

     


    3.HDU 3507 Print Article 

     
    列状态转移方程 然后假设 k < j < i 且j决策更好 不等式列出来就好了
    #define mem(a,x) memset(a,x,sizeof(a))
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<stack>
    #include<cmath>
    #include<map>
    #include<stdlib.h>
    #define Sint(n) scanf("%d",&n)
    #define Sll(n) scanf("%I64d",&n)
    #define Schar(n) scanf("%c",&n)
    #define Sint2(x,y) scanf("%d %d",&x,&y)
    #define Sll2(x,y) scanf("%I64d %I64d",&x,&y)
    #define Pint(x) printf("%d",x)
    #define Pllc(x,c) printf("%I64d%c",x,c)
    #define Pintc(x,c) printf("%d%c",x,c)
    using namespace std;
    typedef long long ll;
    const int N = 500007;
    int dp[N];
    int sum[N];
    int q[N];
    int n,m;
    int EX(int x)
    {
        return x*x;
    }
    int getDP(int i,int j)
    {
        return dp[j] + m + EX(sum[i]-sum[j]);
    }
    int getUP(int j,int k)//yj - yk 
    {
        return (dp[j] + EX(sum[j])) - (dp[k] + EX(sum[k]));
    }
    int getDown(int j,int k)//xj - xk
    {
        return 2*(sum[j] - sum[k]);
    }
    int main()
    {
        
        while (Sint2(n,m) == 2)
        {
            for (int i = 1,x;i <= n;++i)
            {
                Sint(x);
                sum[i] = sum[i-1] + x;
            }
            int head = 0,tail = 0;
            q[tail++] = 0;//单调队列 (单增) 
            for (int i = 1;i <= n;++i)
            {
                //                  getup/getdown  <= sum[i]
                while (head+1<tail&&getUP(q[head+1],q[head])<=sum[i]*getDown(q[head+1],q[head])) head++;
                dp[i] = getDP(i,q[head]);
                //          getup(i,q[tail-1])/getdown(i,q[tail-1]) <= getup(q[tail-1],q[tail-2])/getdown(q[tail-1],q[tail-2])
                while (head+1<tail&&getUP(i,q[tail-1])*getDown(q[tail-1],q[tail-2])<=getUP(q[tail-1],q[tail-2])*getDown(i,q[tail-1]))tail--;
                q[tail++] = i;
            }
            Pintc(dp[n],'
    ');
        }
        return 0;
    }
    View Code

     

    4.HDU 2829 Lawrence

    #define mem(a,x) memset(a,x,sizeof(a))
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<stack>
    #include<cmath>
    #include<map>
    #include<stdlib.h>
    #include<cctype>
    #include<string>
    #define Sint(n) scanf("%d",&n)
    #define Sll(n) scanf("%I64d",&n)
    #define Schar(n) scanf("%c",&n)
    #define Sint2(x,y) scanf("%d %d",&x,&y)
    #define Schars(s) scanf("%s",s) 
    #define Sll2(x,y) scanf("%I64d %I64d",&x,&y)
    #define Pint(x) printf("%d",x)
    #define Pllc(x,c) printf("%I64d%c",x,c)
    #define Pintc(x,c) printf("%d%c",x,c)
    using namespace std;
    typedef long long ll;
    /*
        dp[i][j]表示前j个数分成i组的最小价值
        sum[i]表示前i个数的和
        cost[i]表示前i个数的花费 
    */
    const int N = 1004;
    int sum[N],cost[N],dp[N][N];
    int q[N],head,tail;
    int n,m;
    int EX(int x)
    {
        return x*x;
    }
    int dy(int x,int j,int i)
    {
        return dp[x][i] - cost[i] + EX(sum[i]) - (dp[x][j] - cost[j] + EX(sum[j]));
    }
    int dx(int j,int i)
    {
        return sum[i] - sum[j];
    }
    int DP(int x,int j,int i)
    {
        return dp[x][i]+cost[j] - cost[i] - sum[i]*(sum[j]-sum[i]);
    }
    int main()
    {
        while (Sint2(n,m)==2&&(n||m))
        {
            ++m;
            for (int i = 1,x;i <= n;++i)
            {
                Sint(x);
                sum[i] = sum[i-1] + x;
                cost[i] = cost[i-1] + sum[i-1]*x;
            }
            for (int i = 1;i <= n;++i) dp[1][i] = cost[i];
            for(int i = 2;i <= m;++i)
            {
                head = tail = 0;
                q[tail++] = i-1;
                for (int j = i;j <= n;++j)
                {
                    while (head+1<tail&&dy(i-1,q[head],q[head+1])<=sum[j]*dx(q[head],q[head+1])) head++;
                    dp[i][j] = DP(i-1,j,q[head]);
                    while (head+1<tail&&dx(q[tail-2],q[tail-1])*dy(i-1,q[tail-1],j)<=dy(i-1,q[tail-2],q[tail-1])*dx(q[tail-1],j)) --tail;
                    q[tail++] = j;
                }
            }
            Pintc(dp[m][n],'
    ');
        }
        return 0;
    }
    View Code

     

    5.UVALive 5097 - Cross the Wall

    #define mem(a,x) memset(a,x,sizeof(a))
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<stack>
    #include<cmath>
    #include<map>
    #include<stdlib.h>
    #include<cctype>
    #include<string>
    #define Sint(n) scanf("%d",&n)
    #define Sll(n) scanf("%lld",&n)
    #define Schar(n) scanf("%c",&n)
    #define Schars(s) scanf("%s",s) 
    #define Sint2(x,y) scanf("%d %d",&x,&y)
    #define Sll2(x,y) scanf("%lld %lld",&x,&y)
    #define Pint(x) printf("%d",x)
    #define Pllc(x,c) printf("%lld%c",x,c)
    #define Pintc(x,c) printf("%d%c",x,c)
    using namespace std;
    typedef long long ll;
    /*
        dp[i][j]表示 前i个人挖j个洞的最小花费
        1.当w[i] <= w[j] && h[i]<=h[j]时 舍弃 (w[i],h[i])
        2.将人按w递增 h递减 排序,即满足 w[j] < w[i]&&h[j] > h[i]
        
        故dp[i][j] = dp[k][j-1] + w[i]*h[k+1]
         
    */
    const int N = 500007;
    
    struct Node
    {
        ll h,w;
    }b[N];
    int q[N],head,tail;
    bool cmp(Node a,Node b)
    {
        if (a.h == b.h) return a.w > b.w;
        return a.h > b.h;//确保h递减 
    }
    ll dp[N][104];
    ll dy(int j,int k,int t)
    {
        return dp[j][t] - dp[k][t];
    }
    ll dx(int j,int k)
    {
        return b[k+1].h - b[j+1].h;
    }
    int main()
    {
        int n,k;
        while (Sint2(n,k) == 2)
        {
            for (int i = 1;i <= n;++i)
            {
                Sll2(b[i].w,b[i].h);
            }
            sort(b+1,b+n+1,cmp);
            int t = 1;
            for (int i = 1;i <= n;++i)
            {
                if (b[t].w < b[i].w) b[++t] = b[i];
            }
    //        cout<<t<<endl; 
            k = min(t,k);
            for (int i = 1;i <= t;++i) dp[i][1] = b[i].w*b[1].h;
            for (int j = 2;j <= k;++j)
            {
                head = tail = 0;mem(q,0);
                q[tail++] = 0;
                for (int i = 1;i <= t;++i)
                {
                    while (head+1<tail&&dy(q[head+1],q[head],j-1) <= b[i].w * dx(q[head+1],q[head])) ++head;
                    dp[i][j] = dp[q[head]][j-1] + b[i].w * b[q[head]+1].h;
                    while (head+1<tail&&dy(i,q[tail-1],j-1)*dx(q[tail-1],q[tail-2]) <= dy(q[tail-1],q[tail-2],j-1)*dx(i,q[tail-1])) --tail;
                    q[tail++] = i;
                }
            }
            ll ans = dp[t][1];
            for (int i = 2;i <= k;++i)
            {
                ans = min(ans,dp[t][i]);
            }
            Pllc(ans,'
    ');
        }
        return 0;
    }
    View Code

     

    6.HDU 3045 Picnic Cows

    #define mem(a,x) memset(a,x,sizeof(a))
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<stack>
    #include<cmath>
    #include<map>
    #include<stdlib.h>
    #include<cctype>
    #include<string>
    #define Sint(n) scanf("%d",&n)
    #define Sll(n) scanf("%I64d",&n)
    #define Schar(n) scanf("%c",&n)
    #define Schars(s) scanf("%s",s) 
    #define Sint2(x,y) scanf("%d %d",&x,&y)
    #define Sll2(x,y) scanf("%I64d %I64d",&x,&y)
    #define Pint(x) printf("%d",x)
    #define Pllc(x,c) printf("%I64d%c",x,c)
    #define Pintc(x,c) printf("%d%c",x,c)
    using namespace std;
    typedef long long ll;
    /*
    Cows in the same team should reduce their Moo~ to the one who has the lowest Moo~ in this team
    
        dp[i]表示前i头牛的最小花费
        dp[i] = dp[j] + (sum[i]-sum[j]-(i-j)*a[j+1]) 
        dp[j]-dp[k]+sum[k]-sum[j]+j*a[j+1]-k*a[k+1] < i*(a[j+1]-a[k+1])
    */
    const int N = 400004;
    ll dp[N],a[N],sum[N];
    int q[N],head,tail;
    ll dy(int j,int k)
    {
        return dp[j]-dp[k] + sum[k]-sum[j] + j*a[j+1]-k*a[k+1];
    }
    ll dx(int j,int k)
    {
        return a[j+1] - a[k+1];
    }
    ll DP(int i,int j)
    {
        return dp[j] + (sum[i]-sum[j]-(i-j)*a[j+1]);
    }
    int main()
    {
        int n,t;
        while (Sint2(n,t) == 2)
        {
            for (int i = 1;i <= n;++i) Sll(a[i]);
            sort(a+1,a+n+1);
            for (int i = 1;i <= n;++i) sum[i] = sum[i-1] + a[i];
            head = tail = 0;
            q[tail++] = 0;
            for (int i = 1;i <= n;++i)
            {
                while (head+1<tail&&dy(q[head+1],q[head]) <= i*dx(q[head+1],q[head])) ++head;
                dp[i] = DP(i,q[head]);
                int j = i-t+1;
                if (j < t) continue;
                while (head+1<tail&&dy(j,q[tail-1])*dx(q[tail-1],q[tail-2])<=dy(q[tail-1],q[tail-2])*dx(j,q[tail-1])) --tail;
                q[tail++] = j;
            }
            Pllc(dp[n],'
    ');
        }
        return 0;
    }
    View Code

     

    7.HDU 3516 Tree Construction

     斜率DP写的怎么都过不了,最后用四边形不等式,要保证j-i递增于是枚举长度

    #define mem(a,x) memset(a,x,sizeof(a))
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<stack>
    #include<cmath>
    #include<map>
    #include<stdlib.h>
    #include<cctype>
    #include<string>
    #define Sint(n) scanf("%d",&n)
    #define Sll(n) scanf("%I64d",&n)
    #define Schar(n) scanf("%c",&n)
    #define Schars(s) scanf("%s",s) 
    #define Sint2(x,y) scanf("%d %d",&x,&y)
    #define Sll2(x,y) scanf("%I64d %I64d",&x,&y)
    #define Pint(x) printf("%d",x)
    #define Pllc(x,c) printf("%I64d%c",x,c)
    #define Pintc(x,c) printf("%d%c",x,c)
    using namespace std;
    typedef long long ll;
    /*
        dp[i][j]表示从i到j所需的最小花费
        dp[i][j] = min {dp[i][k] + dp[k+1][j] + w(i,k,j)}
        w(i,k,j) = y[k] - y[j] + x[k+1] - x[i]
        s[i][j] = k 表示 dp[i][j]这个状态最优的决策是 k 
    */
    const int N = 1003;
    const int inf = 0x3f3f3f3f;
    int dp[N][N],s[N][N];
    int x[N],y[N];
    int w(int i,int k,int j)
    {
        if (k >= j) return inf;
        return y[k] - y[j] + x[k+1] - x[i];
    }
    int DP(const int &n)
    {
        mem(dp,0);int tmp;
        for (int L = 2;L<=n;++L) //以j-i递增为顺序递推
        {
            for (int i = 1,j = L;i+L-1<=n;++i,j = i+L-1)//i 是 区间左端点,j是区间右端点
            {
                dp[i][j] = inf;
                for (int k = s[i][j-1];k <= s[i+1][j];++k)
                {
                    tmp = dp[i][k] + dp[k+1][j] + w(i,k,j);
                    if (tmp < dp[i][j])
                    {
                        dp[i][j] = tmp;
                        s[i][j] = k;
                    }
                }
            } 
        } 
        return dp[1][n];
    }
    int main()
    {
        int n;
        while (Sint(n) == 1)
        {
            for (int i = 1;i <= n;++i) 
            {
                Sint2(x[i],y[i]);
                s[i][i] = i;
            }
            Pintc(DP(n),'
    ');
        }
        return 0;
    }
    View Code

     

    8.POJ 1160 Post Office

     状态转移方程写的好的话不用优化也可以过 

    这个题的状态转移的方程很经典啊

    View Code

     

    9.POJ 1180 Batch Scheduling

    #define mem(a,x) memset(a,x,sizeof(a))
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<stack>
    #include<cmath>
    #include<map>
    #include<stdlib.h>
    #include<cctype>
    #include<string>
    #define Sint(n) scanf("%d",&n)
    #define Sll(n) scanf("%I64d",&n)
    #define Schar(n) scanf("%c",&n)
    #define Schars(s) scanf("%s",s) 
    #define Sint2(x,y) scanf("%d %d",&x,&y)
    #define Sll2(x,y) scanf("%I64d %I64d",&x,&y)
    #define Pint(x) printf("%d",x)
    #define Pllc(x,c) printf("%I64d%c",x,c)
    #define Pintc(x,c) printf("%d%c",x,c)
    using namespace std;
    typedef long long ll;
    const int inf = 0x3f3f3f3f;
    /*
        dp[i]表示前i个job的最小花费
        dp[i] = dp[j] + (S+sumt[i] - sumt[j]) *(sumf[i]-sumf[j])
    */ 
    const int N = 10004;
    ll dp[N];
    ll sumt[N],sumf[N];
    ll t[N],f[N]; 
    int S,n;
    int q[N],head,tail;
    ll dy(int j,int k)
    {
        return dp[j] - dp[k];
    }
    ll dx(int j,int k)
    {
        return sumt[j] - sumt[k];
    }
    ll DP(int i,int j)
    {
        return dp[j] + (S + sumt[i]-sumt[j])*sumf[i];
    }
    int main()
    {
        while (Sint2(n,S) == 2)
        {
            for (int i = n;i >= 1;--i) Sll2(t[i],f[i]);
            for (int i = 1;i <= n;++i)
            {
                sumt[i] = sumt[i-1] + t[i];
                sumf[i] = sumf[i-1] + f[i];
            }
            head = tail = 0;
            q[tail++] = 0;
            for (int i = 1;i <= n;++i)
            {
                while (head+1<tail&&dy(q[head],q[head+1])>dx(q[head],q[head+1])*sumf[i]) ++head;
                dp[i] = DP(i,q[head]);
                while (head+1<tail&&dy(q[tail-1],i)*dx(q[tail-2],q[tail-1])<dy(q[tail-2],q[tail-1])*dx(q[tail-1],i)) --tail;
                q[tail++] = i;
            }
            Pllc(dp[n],'
    ');
        }
        return 0;
    }
    View Code

    长路漫漫,其修远兮,ORZ

  • 相关阅读:
    查看eclipse的安装路径
    js中Number()、parseInt()和parseFloat()的区别进行详细介绍
    JSON 基础学习1
    Jquery Math ceil()、floor()、round()比较与用法
    easyui获取当前点击对象tabs的title和Index
    java中String,int,Integer,char、double类型转换
    DNA排序
    The Peanuts
    牛的选举——取最大k个数
    数据筛选——第k小的数
  • 原文地址:https://www.cnblogs.com/hua-dong/p/7811026.html
Copyright © 2011-2022 走看看