As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a little special somehow. You are looking forward to it, too, aren't you? Unfortunately there still are months to go. Take it easy. Luckily you meet me. I have a problem for you to solve. Enjoy your time.
Now given a positive integer N, get the sum S of all positive integer divisors of 2008 N. Oh no, the result may be much larger than you can think. But it is OK to determine the rest of the division of S by K. The result is kept as M.
Pay attention! M is not the answer we want. If you can get 2008 M, that will be wonderful. If it is larger than K, leave it modulo K to the output. See the example for N = 1,K = 10000: The positive integer divisors of 20081 are 1、2、4、8、251、502、1004、2008,S = 3780, M = 3780, 2008 M % K = 5776.
Now given a positive integer N, get the sum S of all positive integer divisors of 2008 N. Oh no, the result may be much larger than you can think. But it is OK to determine the rest of the division of S by K. The result is kept as M.
Pay attention! M is not the answer we want. If you can get 2008 M, that will be wonderful. If it is larger than K, leave it modulo K to the output. See the example for N = 1,K = 10000: The positive integer divisors of 20081 are 1、2、4、8、251、502、1004、2008,S = 3780, M = 3780, 2008 M % K = 5776.
InputThe input consists of several test cases. Each test case contains a line with two integers N and K (1 ≤ N ≤ 10000000, 500 ≤ K ≤ 10000). N = K = 0 ends the input file and should not be processed.
OutputFor each test case, in a separate line, please output the result.
Sample Input
1 10000 0 0
Sample Output
5776
题意:求M=2008^n的所有因子和%K;输出2008^M%K。
思路:后面部分就是普通快速幂了;问题关键在于解决前面部分。
因子和:由唯一分解,2008=(2^3)*(251^1)。所以2008^n=(2^3n)*(251^n),则因子有(3n+1)*(n+1)个;sum=(1+2+4+...2^3n)*(1+251+..+251*n)。
对其合并,得ans=(2^(3n+1)-1)*(251^(n+1)-1)/250。(等比数列)
解决分母250:ans%K,而ans有分母250,且gcd(250,K)不一定就为1,即不一定互素,所以不能用逆元解决。
公式:(a/b)%mod=a%(b*mod)/b%mod
(emmm,注意代码里两个等比数列求和都是取余250*k,尽管前面一个没有分母250.)
对比:这个公式使用于分母比较小的情况,而且不要求b,Mod互素,条件是a|b。而一般求组合数(n!)/(m!*(n-m)!)%Mod,由于分母较大,所以采用求逆元求解的方法。
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> using namespace std; #define ll long long ll q_pow(ll a,ll x,ll Mod) { ll res=1; while(x){ if(x&1LL) res=res*a%Mod; a=a*a%Mod; x>>=1; }return res; } int main() { ll n,k,sum; while(~scanf("%lld%lld",&n,&k)){ if(n==0&&k==0) return 0; sum=(q_pow(2,3*n+1,250*k)-1)*(q_pow(251,n+1,250*k)-1)%(250*k)/250; printf("%lld ",q_pow(2008,sum,k)); } return 0; }