Rubik is very keen on number permutations.
A permutation a with length n is a sequence, consisting of n different numbers from 1 to n. Element number i (1 ≤ i ≤ n) of this permutation will be denoted as ai.
Furik decided to make a present to Rubik and came up with a new problem on permutations. Furik tells Rubik two number permutations: permutation a with length n and permutation b with length m. Rubik must give an answer to the problem: how many distinct integers d exist, such that sequence c (c1 = a1 + d, c2 = a2 + d, ..., cn = an + d) of length n is a subsequence of b.
Sequence a is a subsequence of sequence b, if there are such indices i1, i2, ..., in(1 ≤ i1 < i2 < ... < in ≤ m), that a1 = bi1, a2 = bi2, ..., an = bin, where n is the length of sequence a, and m is the length of sequence b.
You are given permutations a and b, help Rubik solve the given problem.
Input
The first line contains two integers n and m (1 ≤ n ≤ m ≤ 200000) — the sizes of the given permutations. The second line contains n distinct integers — permutation a, the third line contains m distinct integers — permutation b. Numbers on the lines are separated by spaces.
Output
On a single line print the answer to the problem.
Example
1 1
1
1
1
1 2
1
2 1
2
3 3
2 3 1
1 2 3
0
题意:给定全排列A(1-N),全排列B(1-M),问有多少个d,满足全排列A的每一位+d后,是B的子序列(不是字串)。
思路:对于全排列A,得到hashA,先在B中得到1-N的hashB。每次d++的新排列,等效于1到N+1的排列每一位减去1(hash实现)。
具体的代码一看就明白。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; typedef unsigned long long ull; const int maxn=200010; const int B=10007; int N,M,pos[maxn],x; ull g[maxn]; ull val,sum; struct SegmentTree { ull hash[maxn<<2]; int cnt[maxn<<2]; void build(int Now,int l,int r) { hash[Now]=cnt[Now]=0; if(l==r) return ; int mid=(l+r)>>1; build(Now<<1,l,mid); build(Now<<1|1,mid+1,r); } void pushup(int Now) { hash[Now]=hash[Now<<1]*g[cnt[Now<<1|1]]+hash[Now<<1|1]; cnt[Now]=cnt[Now<<1]+cnt[Now<<1|1]; } void update(int Now,int l,int r,int pos,int val,int num) { if(l==r) { hash[Now]+=num*val; cnt[Now]+=num; return; } int mid=(l+r)>>1; if(pos<=mid) update(Now<<1,l,mid,pos,val,num); else update(Now<<1|1,mid+1,r,pos,val,num); pushup(Now); } }Tree; int main() { while(~scanf("%d%d",&N,&M)) { val=sum=0; g[0]=1; for(int i=1;i<=N;i++) g[i]=g[i-1]*B, sum+=g[i-1]; for(int i=1;i<=N;i++){ scanf("%d",&x); val=val*B+x; } for(int i=1;i<=M;i++){ scanf("%d",&x); pos[x]=i; } Tree.build(1,1,M); int ans=0; for(int i=1;i<=M;i++)//把数值1~M按顺序加入线段树中 { Tree.update(1,1,M,pos[i],i,1); if(i>=N) { if(Tree.hash[1]-(sum*(i-N))==val) ans++; Tree.update(1,1,M,pos[i-N+1],i-N+1,-1); } } printf("%d ",ans); } return 0; }