zoukankan      html  css  js  c++  java
  • CodeForces-213E:Two Permutations(神奇的线段树+hash)

    Rubik is very keen on number permutations.

    permutation a with length n is a sequence, consisting of n different numbers from 1 to n. Element number i (1 ≤ i ≤ n) of this permutation will be denoted as ai.

    Furik decided to make a present to Rubik and came up with a new problem on permutations. Furik tells Rubik two number permutations: permutation a with length n and permutation b with length m. Rubik must give an answer to the problem: how many distinct integers d exist, such that sequence c (c1 = a1 + d, c2 = a2 + d, ..., cn = an + d) of length n is a subsequence of b.

    Sequence a is a subsequence of sequence b, if there are such indices i1, i2, ..., in(1 ≤ i1 < i2 < ... < in ≤ m), that a1 = bi1a2 = bi2..., an = bin, where n is the length of sequence a, and m is the length of sequence b.

    You are given permutations a and b, help Rubik solve the given problem.

    Input

    The first line contains two integers n and m (1 ≤ n ≤ m ≤ 200000) — the sizes of the given permutations. The second line contains n distinct integers — permutation a, the third line contains m distinct integers — permutation b. Numbers on the lines are separated by spaces.

    Output

    On a single line print the answer to the problem.

    Example

    Input
    1 1
    1
    1
    Output
    1
    Input
    1 2
    1
    2 1
    Output
    2
    Input
    3 3
    2 3 1
    1 2 3
    Output
    0

    题意:给定全排列A(1-N),全排列B(1-M),问有多少个d,满足全排列A的每一位+d后,是B的子序列(不是字串)。

    思路:对于全排列A,得到hashA,先在B中得到1-N的hashB。每次d++的新排列,等效于1到N+1的排列每一位减去1(hash实现)。

    具体的代码一看就明白。

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    typedef unsigned long long ull;
    const int maxn=200010;
    const int B=10007;
    int N,M,pos[maxn],x;
    ull g[maxn];
    ull val,sum;
    struct SegmentTree
    {
        ull hash[maxn<<2];
        int cnt[maxn<<2];
        void build(int Now,int l,int r)
        {
            hash[Now]=cnt[Now]=0;
            if(l==r) return ;
            int mid=(l+r)>>1;
            build(Now<<1,l,mid);
            build(Now<<1|1,mid+1,r);
        }
        void pushup(int Now)
        {
            hash[Now]=hash[Now<<1]*g[cnt[Now<<1|1]]+hash[Now<<1|1];
            cnt[Now]=cnt[Now<<1]+cnt[Now<<1|1];
        }
        void update(int Now,int l,int r,int pos,int val,int num)
        {
            if(l==r)
            {
                hash[Now]+=num*val;
                cnt[Now]+=num;
                return;
            }
            int mid=(l+r)>>1;
            if(pos<=mid) update(Now<<1,l,mid,pos,val,num);
            else update(Now<<1|1,mid+1,r,pos,val,num);
            pushup(Now);
        }
    }Tree;
    int main()
    {
        while(~scanf("%d%d",&N,&M))
        {
            val=sum=0;
            g[0]=1;
            for(int i=1;i<=N;i++)  g[i]=g[i-1]*B, sum+=g[i-1];
            for(int i=1;i<=N;i++){
                scanf("%d",&x);
                val=val*B+x;
            }
            for(int i=1;i<=M;i++){
                scanf("%d",&x);
                pos[x]=i;
            }
            Tree.build(1,1,M);
            int ans=0;
            for(int i=1;i<=M;i++)//把数值1~M按顺序加入线段树中
            {
                Tree.update(1,1,M,pos[i],i,1);
                if(i>=N)
                {
                    if(Tree.hash[1]-(sum*(i-N))==val) ans++;
                    Tree.update(1,1,M,pos[i-N+1],i-N+1,-1);
                }
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    CefSharp.v49.0.1浏览器控件完全WPF版,实现禁止弹出新窗口,在同一窗口打开链接,并且支持带type="POST" target="_blank"的链接
    C#动态调用WebService
    WPF实现窗体中的悬浮按钮
    Oracle树结构查询按层级排序
    WPF自定义TabControl样式
    WPF自定义Window窗体样式
    C# 实现图片压缩
    C# 图片反色处理 图片夜间模式
    C#中多线程中变量研究
    EasyNetQ操作RabbitMQ(高级消息队列)
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8588309.html
Copyright © 2011-2022 走看看