zoukankan      html  css  js  c++  java
  • SPOJ:Divisors of factorial (hard) (唯一分解&分块优化)

    Factorial numbers are getting big very soon, you'll have to compute the number of divisors of such highly composite numbers.

    Input

    The first line contains an integer T, the number of test cases.
    On the next T lines, you will be given two integers N and M.

    Output

    Output T lines, one for each test case, with the number of divisors of the factorial of N.
    Since the answer can get very big, output it modulo M.

    Example

    Input:
    3
    2 1000
    3 11
    4 5
    Output:
    2
    4
    3
    

    Constraints

    0 < T < 5432
    1 < N < 10^8
    1 < M < 10^9
    

    For N, M : uniform random input in the range.
    One input file.

    题意:  T组数据 给定N,M ; 求N的阶乘的因子个数 , 结果模M .

    思路:   对于求某个数的因子个数 , 我们知道是唯一分解为素数 ,表示为素数的幂的乘积形式a1^p1*a2^p2... 然后结果就是所有(p1+1)*(p2+1)...的乘积.

             但是这里的N的阶乘过大,  而且多组询问, T也过大 ,而且需要模不同的M (即可能不能离线求). 

            考虑到对于大于10000的素数  最多除一次 所以单独考虑 即把前面1229个素数和后面第1230个素数到最后一个素数分开考虑  :前面的暴力除,复杂度1229*logN

            后面部分分块 把除数相同的合并. 然后快速幂, 复杂度logN*logN

    所以最后的复杂度是O(T*1230*logN)

    #include<bits/stdc++.h>
    typedef long long ll;
    using namespace std;
    const int maxn=1e8;
    const int Mod=1e9+7;
    int p[6000000],vis[maxn+10],cnt;
    void prime()
    {
        for(int i=2;i<=maxn;i++){
            if(!vis[i]) p[++cnt]=i;
            for(int j=1;j<=cnt&&(ll)i*p[j]<=maxn;j++){
                vis[i*p[j]]=1;
                if(!(i%p[j])) break;
            }
        }
    }
    int qpow(int a,int x,int M){
        int res=1;
        while(x){
            if(x&1) res=(ll)res*a%M;
            a=(ll)a*a%M; x>>=1;
        } return res;
    }
    int main()
    {
        int T,i,j,x,M,pos,ans;
        prime();  scanf("%d",&T);
        for(i=1;i<=T;i++){
            ans=1; scanf("%d%d",&x,&M);
            for(j=1;j<1230&&p[j]<=x;j++){  //暴力部分 
                int tmp=x,num=0; 
                while(tmp){
                    num+=tmp/p[j]; tmp/=p[j];
                }
                ans=(ll)ans*(num+1)%M;
            }
            pos=upper_bound(p+1,p+cnt+1,x)-p; pos--;
            int fcy;
            for(j=1230;j<=pos;j=fcy+1){        //合并部分 
                fcy=upper_bound(p+1,p+cnt+1,x/(x/p[j]))-p; fcy--;
                if(fcy>pos) fcy=pos;
                ans=(ll)ans*qpow(x/p[j]+1,fcy-j+1,M)%M;
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    解决VS2005 远程工具无法通过同步软件连接S5pv210 样机的问题
    java.util.concurrent 多线程框架线程池编程(三)
    线程池java.util.concurrent 多线程框架(二)
    java.util.concurrent 多线程框架线程池编程(一)
    java.util.concurrent 多线程框架线程池编程(四)
    Box2D学习笔记(2)
    Box2D学习笔记(1)
    ASP.NET页面防止刷新
    C#中跨数据库增删改的事务控制
    .NET(C#)开源代码分析
  • 原文地址:https://www.cnblogs.com/hua-dong/p/9076240.html
Copyright © 2011-2022 走看看