zoukankan      html  css  js  c++  java
  • 利用BERT得到句子的表示向量(pytorch)

    在文本分类和文本相似度匹配中,经常用预训练语言模型BERT来得到句子的表示向量,下面给出了pytorch环境下的操作的方法:

    • 这里使用huggingface的transformers中BERT, 需要先安装该依赖包(pip install transformers)
    • 具体实现如下:
    import torch
    from tqdm import tqdm
    import joblib
    import numpy as np
    from torch.utils.data import DataLoader,Dataset
    from sklearn.datasets import fetch_20newsgroups
    from transformers import BertTokenizer,BertModel
    
    class NewDataset(Dataset):
        def __init__(self, bert_train, mask_train=None, seg_ids_train=None):
            self.bert_train = bert_train
            self.mask_train = mask_train
            self.seg_ids_train = seg_ids_train
        def __getitem__(self, i):
            return torch.LongTensor(self.bert_train[i]), 
                   torch.LongTensor(self.mask_train[i]), 
                   torch.LongTensor(self.seg_ids_train[i])
    
        def __len__(self):
            return len(self.bert_train)
    
    
    newsgroups_train = fetch_20newsgroups(subset='train').data
    newsgroups_test = fetch_20newsgroups(subset='test').data
    train_label = fetch_20newsgroups(subset='train').target
    test_label = fetch_20newsgroups(subset='test').target
    
    L=512
    N = len(newsgroups_train)
    bert_train,mask_train,seg_ids_train = [], [],[]
    all_sents = newsgroups_train+newsgroups_test
    tokenizer=BertTokenizer.from_pretrained('bert-base-uncased')
    for sent in tqdm(all_sents):
        tokens = tokenizer.tokenize(sent)
        tokens = ['[CLS]'] + tokens + ['[SEP]']
        padded_tokens = tokens[:L] + ['[PAD]' for _ in range(L - len(tokens))]
        attn_mask = [1 if token != '[PAD]' else 0 for token in padded_tokens]
        sent_ids = tokenizer.convert_tokens_to_ids(padded_tokens)
        seg_ids = [0 for _ in range(len(padded_tokens))]
        bert_train.append(sent_ids)
        mask_train.append(attn_mask)
        seg_ids_train.append(seg_ids)
    
    torch.device("cuda" if torch.cuda.is_available() else "cpu")
    device = "cuda:0"
    data = NewDataset(bert_train,mask_train=mask_train,seg_ids_train=seg_ids_train)
    bert_model = BertModel.from_pretrained('bert-base-uncased').to(device)
    
    reps = []
    batchsize = 5
    for batch in tqdm(DataLoader(data, shuffle=False, batch_size=batchsize)):
        bert_train, mask_train, seg_ids_train = batch
        hidden_reps, cls_head = bert_model(bert_train.cuda(), attention_mask=mask_train.cuda(), token_type_ids=seg_ids_train.cuda())
        reps+=list(cls_head.detach().cpu().numpy())
    
    if len(reps) != len(all_sents):
        assert "no equal size"
    
    reps_train = reps[:N]
    reps_test = reps[-N:]
    
    newsgroups_data = {'train_vecs': reps_train, 'train_label': train_label, 'test_vecs': reps_test,'test_label': test_label}
    joblib.dump(newsgroups_data,"newsgroups_data.pkl")
    

      

  • 相关阅读:
    实现用户注册验证码
    自带的打印预览
    分页存储过程
    文章标题、内容、摘要的处理函数
    ASP常用函数收藏
    生活中的经典感人语句
    如何在某一数据库的所有表的所有列上搜索一个字符串?
    如何访问隐藏的列表 workflow history list
    Windows Server 2008下如果什么操作没能正常完成, 请尝试run as administrator
    Visual Studio Build Marcos
  • 原文地址:https://www.cnblogs.com/huadongw/p/14893773.html
Copyright © 2011-2022 走看看