zoukankan      html  css  js  c++  java
  • 003_行_列_单元格

    d = {"x":100, "y":200, "z":300}
    s1 = pd.Series(d)
    print(s1)
    print(s1.index)
    print(s1.values)
    # ? x行y列
    
    ########################################
    L1 = [100, 200, 300]
    L2 = [1000, 2000, 3000]
    L3 = ["x", "y", "z"]
    s2 = pd.Series(L1,  index=L3)
    print(s2)
    
    
    ########################################
    s3 = pd.Series([1000, 2000, 3000],  index=["x", "y", "z"])
    print(s3)
    
    
    ########################################
    import pandas as pd
    
    # 列插入法
    s1 = pd.Series([10, 20, 30],  index=[1, 2, 3], name="A")
    s2 = pd.Series([100, 200, 300],  index=[1, 2, 3], name="B")
    s3 = pd.Series([1000, 2000, 3000],  index=[1, 2, 4], name="C")
    
    df = pd.DataFrame({s1.name:s1, s2.name:s2, s3.name:s3})
    print(df)
    print(df.index)
    print(df.values)
    
    
    # 行插入法
    s1 = pd.Series([10, 100, 1000],  index=[1, 2, 3], name="A")
    s2 = pd.Series([20, 200, 2000],  index=[1, 2, 3], name="B")
    s3 = pd.Series([30, 300, 3000],  index=[1, 2, 3], name="C")
    
    # 行插入法
    # s1 = pd.Series([10, 100, 1000], index=["A", "B", "C"], name=1)
    # s2 = pd.Series([20, 200, 2000], index=["A", "B", "C"], name=2)
    # s3 = pd.Series([30, 300, 3000], index=["A", "B", "C"], name=3)
    
    # 行插入法
    # stu_add_v1 = pd.Series([41, "Student_041", 88], index=["ID", "Name", "Score"])
    # stu_add_v2 = pd.Series({"ID":41, "Name":"test_name", "Score":98})
        
        
    df_v2 = pd.DataFrame([s1, s2, s3])
    print(df_v2)
    print(df_v2.index)
    print(df_v2.values)
  • 相关阅读:
    系统角色权限问题
    解析JQuery Ajax
    JavaScriptSerializer序列化时间处理
    Javascript加载talbe(包含分页、数据下载功能)
    代理模式
    工厂模式
    单例模式
    Oracle内置函数
    Oracle大数据SQL语句优化
    Oracle大数据查询优化
  • 原文地址:https://www.cnblogs.com/huafan/p/14409557.html
Copyright © 2011-2022 走看看