zoukankan      html  css  js  c++  java
  • B. DZY Loves Modification

    B. DZY Loves Modification
    time limit per test 2 seconds
    memory limit per test 256 megabytes
    input standard input
    output standard output

    As we know, DZY loves playing games. One day DZY decided to play with a n × m matrix. To be more precise, he decided to modify the matrix with exactly k operations.

    Each modification is one of the following:

    1. Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
    2. Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.

    DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.

    Input

    The first line contains four space-separated integers n, m, k and p (1 ≤ n, m ≤ 103; 1 ≤ k ≤ 106; 1 ≤ p ≤ 100).

    Then n lines follow. Each of them contains m integers representing aij (1 ≤ aij ≤ 103) — the elements of the current row of the matrix.

    Output

    Output a single integer — the maximum possible total pleasure value DZY could get.

    Examples
    input
    2 2 2 2
    1 3
    2 4
    output
    11
    input
    2 2 5 2
    1 3
    2 4
    output
    11
    Note

    For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:


    1 1
    0 0

    For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:


    -3 -3
    -2 -2

    题解:

    首先上一个错误的想法,分别统计出每一行和每一列的和,然后用优先队列维护,每次取出最大值。

    将所对应的行或列的每一个值-P,再更新一下答案。

    这种做法为什么是错的呢,因为假设如果有一行和一列的和是相等的,那么我们并不知道要先走行还是先走列。

    再来看正确的做法:

    首先我们设最终选了 行 i 次,则列选了 k-i 次

    那么假设我们先全部选行,然后选列,则每次选列时,要-= i*p

    这样最后是 -= i*(k-i)*p

    也就是所有行对列的影响

    那我们先把这个 i*(k-i)*p 提出来,那么选行和选列就互不影响

    就可以分别考虑行和列

    对于只取行的情况:

    预处理出选0次 1次······k次行的最大值 H[i]

    即优先队列跑一次即可

    同理对列处理, 得到 L[i] 表示取i次列, 0次行的最大值

    然后 ans = max( H[i]+L[k-i] - i*(k-i)*p )

    注意结果可能是很小的负数,ans = -inf ,inf要足够大

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6+7;
    long long c[maxn],r[maxn],ll[maxn],rr[maxn];
    long long a[1005][1005];
    int n,m,k,p;
    int main()
    {
        scanf("%d%d%d%d",&n,&m,&k,&p);
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=m; j++)
            {
                scanf("%I64d",&a[i][j]);
                ll[i]+=a[i][j];
                rr[j]+=a[i][j];
            }
        }
        priority_queue<long long>Q;
        for(int i=1; i<=n; i++)Q.push(ll[i]);
        for(int i=1; i<=k; i++)
        {
            int now = Q.top();
            Q.pop();
            c[i]=c[i-1]+now;
            now-=m*p;
            Q.push(now);
        }
        while(!Q.empty())Q.pop();
        for(int i=1; i<=m; i++)Q.push(rr[i]);
        for(int i=1; i<=k; i++)
        {
            int now=Q.top();
            Q.pop();
            r[i]=r[i-1]+now;
            now-=n*p;
            Q.push(now);
        }
        long long ans = -1LL<<60;
        for(int i=0; i<=k; i++)
            ans=max(ans,c[i]+r[k-i]-1ll*i*(k-i)*p);
        cout<<ans<<endl;
    }

     

  • 相关阅读:
    Keras猫狗大战四:数据增强+添加dropout层,精度达83%
    Keras猫狗大战三:加载模型,预测目录中图片,画混淆矩阵
    左边列表多选可以批量移动到右边列表,右边列表页可以批量移动到左边列表,可以实现前端自动搜索 ajax 传递List
    两个list框联动-转载
    mybatis
    lambda
    sprint 单元测试
    java项目部署测试服务器二级域名解决方案
    java cookie 单点登录和登录拦截器 从实现到原理
    redis 概述和阿里云redis搭建和java后台获取
  • 原文地址:https://www.cnblogs.com/huangdalaofighting/p/7390442.html
Copyright © 2011-2022 走看看