zoukankan      html  css  js  c++  java
  • [HDU 4417]Super Mario

    Problem Description

    Mario is world-famous plumber. His “burly” figure and amazing jumping ability reminded in our memory. Now the poor princess is in trouble again and Mario needs to save his lover. We regard the road to the boss’s castle as a line (the length is n), on every integer point i there is a brick on height hi. Now the question is how many bricks in [L, R] Mario can hit if the maximal height he can jump is H.

    Input

    The first line follows an integer T, the number of test data.
    For each test data:
    The first line contains two integers n, m (1 <= n <=10^5, 1 <= m <= 10^5), n is the length of the road, m is the number of queries.
    Next line contains n integers, the height of each brick, the range is [0, 1000000000].
    Next m lines, each line contains three integers L, R,H.( 0 <= L <= R < n 0 <= H <= 1000000000.)

    Output

    For each case, output "Case X: " (X is the case number starting from 1) followed by m lines, each line contains an integer. The ith integer is the number of bricks Mario can hit for the ith query.

    Sample Input

    1
    10 10
    0 5 2 7 5 4 3 8 7 7
    2 8 6
    3 5 0
    1 3 1
    1 9 4
    0 1 0
    3 5 5
    5 5 1
    4 6 3
    1 5 7
    5 7 3

    Sample Output

    Case 1:
    4
    0
    0
    3
    1
    2
    0
    1
    5
    1
     

    题解:

    主席树模板题...

     1 //Never forget why you start
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstdlib>
     5 #include<cstring>
     6 #include<cmath>
     7 #include<algorithm>
     8 #define ll(x) seg[x].l
     9 #define rr(x) seg[x].r
    10 using namespace std;
    11 int n,m,t,b[100005],mmax;
    12 struct node{
    13   int x,pos,cnt;
    14   friend bool operator < (const node a,const node b){
    15     return a.x<b.x;
    16   }
    17 }a[100005];
    18 bool cmp(const node a,const node b){
    19   return a.pos<b.pos;
    20 }
    21 int root[100005],cnt=0;
    22 struct Seg{
    23   int l,r,sum;
    24 }seg[10000005];
    25 int newnode(int root){
    26   cnt++;
    27   seg[cnt]=seg[root];
    28   return cnt;
    29 }
    30 void push_up(int root){
    31   seg[root].sum=seg[ll(root)].sum+seg[rr(root)].sum;
    32 }
    33 void insert(int &root,int l,int r,int x){
    34   root=newnode(root);
    35   if(l==r){seg[root].sum++;return;}
    36   int mid=(l+r)>>1;
    37   if(x<=mid)insert(ll(root),l,mid,x);
    38   if(mid<x)insert(rr(root),mid+1,r,x);
    39   push_up(root);
    40 }
    41 int query(int lroot,int rroot,int left,int right,int l,int r){
    42   if(l<=b[left]&&b[right]<=r)
    43     return seg[rroot].sum-seg[lroot].sum;
    44   if(l>b[right]||r<b[left])return 0;
    45   int mid=(left+right)>>1,ans=0;
    46   if(l<=b[mid])ans+=query(ll(lroot),ll(rroot),left,mid,l,r);
    47   if(b[mid]<r)ans+=query(rr(lroot),rr(rroot),mid+1,right,l,r);
    48   return ans;
    49 }
    50 int main(){
    51   int i,j;
    52   scanf("%d",&t);
    53   for(j=1;j<=t;j++){
    54     scanf("%d%d",&n,&m);
    55     for(i=1;i<=n;i++){
    56       scanf("%d",&a[i].x);
    57       a[i].pos=i;
    58     }
    59     sort(a+1,a+n+1);
    60     a[1].cnt=1;
    61     b[a[1].cnt]=a[1].x;
    62     for(i=2;i<=n;i++){
    63       a[i].cnt=a[i-1].cnt+(a[i].x!=a[i-1].x);
    64       b[a[i].cnt]=a[i].x;
    65     }
    66     mmax=a[n].cnt;;
    67     sort(a+1,a+n+1,cmp);
    68     root[0]=0;cnt=0;
    69     for(i=1;i<=n;i++){
    70       root[i]=root[i-1];
    71       insert(root[i],1,mmax,a[i].cnt);
    72     }
    73     printf("Case %d:
    ",j);
    74     for(i=1;i<=m;i++){
    75       int u,v,l;
    76       scanf("%d%d%d",&u,&v,&l);
    77       u++;v++;
    78       printf("%d
    ",query(root[u-1],root[v],1,mmax,0,l));
    79     }
    80   }
    81   return 0;
    82 }
  • 相关阅读:
    06HTML和CSS知识点总结(六)
    05HTML和CSS知识点总结(五)
    webpack警告解除(WARNING in configuration The 'mode' option has not been set)
    如何Altium Designer AD输出元件清单及按照不同数值分类
    M57962
    艾科 驱动电路分析
    矢量旋度的散度恒为零
    迟滞比较器
    与非门SR锁存器
    寄存器与锁存器的区别
  • 原文地址:https://www.cnblogs.com/huangdalaofighting/p/8277764.html
Copyright © 2011-2022 走看看