zoukankan      html  css  js  c++  java
  • HDU 1159

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0



    题意:求最大公共子序列的长度



    解题思路:
     用d[i][j]表示公共子序列的长度。
          如果x[i-1]==y[j-1]
               d[i][j]=d[i-1][j-1]+1
          否则
               d[i][j]=max(d[i-1][j],d[i][j-1])
          



    代码如下:



     1 #include <stdio.h>
     2 #include <string.h>
     3 int max(int a,int b)
     4 {
     5     return a>b?a:b;
     6 }
     7 char x[1000],y[1000];
     8 int d[1000][1000];
     9 int main()
    10 {
    11     while(scanf("%s%s",&x,&y)!=EOF)
    12     {
    13         //memset(d,0,sizeof(d));
    14         int lenx=strlen(x),leny=strlen(y);
    15         for(int i=1; i<=lenx; i++)
    16         {
    17             for(int j=1; j<=leny; j++)
    18             {
    19                 if(x[i-1]==y[j-1])
    20                 {
    21                     d[i][j]=d[i-1][j-1]+1;
    22                     //printf("x[%d]=%c  y[%d]=%c    d[%d][%d]=%d    %d
    ",i-1,x[i-1],j-1,y[j-1],i-1,j-1,d[i-1][j-1],d[i][j]);
    23                 }
    24                 else
    25                 {
    26                     d[i][j]=max(d[i-1][j],d[i][j-1]);
    27                    // printf("x[%d]=%c  y[%d]=%c     d[%d][%d]=%d      d[%d][%d]=%d      %d
    ",i-1,x[i-1],j-1,y[j-1],i-1,j,d[i-1][j],i,j-1,d[i][j-1],d[i][j]);
    28                 }
    29 
    30             }
    31         }
    32         printf("%d
    ",d[lenx][leny]);
    33     }
    34 }









        
  • 相关阅读:
    odoo 自定义视图
    Odoo 模型之间的关系 笔记
    C#中计算两点之间连线的角度
    Jquery中1.6.x中新的方法prop()方法
    VS2010快捷键说明
    将DATAtable转换成 json格式
    在IIS中执行EXE文件时的问题
    WebDev.WebServer40.exe已停止工作
    sqllite developer过期解决方案
    c#的DateTime.Now函数详解
  • 原文地址:https://www.cnblogs.com/huangguodong/p/4734972.html
Copyright © 2011-2022 走看看