zoukankan      html  css  js  c++  java
  • tensorflow实例之keras的siamese(孪生网络)实现案例

    一、

    keras的siamese(孪生网络)实现案例

    二、代码实现

    import keras
    import numpy as np
    import matplotlib.pyplot as plt
    
    import random
    
    from keras.callbacks import TensorBoard
    from keras.datasets import mnist
    from keras.models import Model
    from keras.layers import Input, Flatten, Dense, Dropout, Lambda
    from keras.optimizers import RMSprop
    from keras import backend as K
    
    num_classes = 10
    epochs = 20
    
    
    def euclidean_distance(vects):
     x, y = vects
     sum_square = K.sum(K.square(x - y), axis=1, keepdims=True)
     return K.sqrt(K.maximum(sum_square, K.epsilon()))
    
    
    def eucl_dist_output_shape(shapes):
     shape1, shape2 = shapes
     return (shape1[0], 1)
    
    
    def contrastive_loss(y_true, y_pred):
     '''Contrastive loss from Hadsell-et-al.'06
     http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
     '''
     margin = 1
     sqaure_pred = K.square(y_pred)
     margin_square = K.square(K.maximum(margin - y_pred, 0))
     return K.mean(y_true * sqaure_pred + (1 - y_true) * margin_square)
    
    
    def create_pairs(x, digit_indices):
     '''Positive and negative pair creation.
     Alternates between positive and negative pairs.
     '''
     pairs = []
     labels = []
     n = min([len(digit_indices[d]) for d in range(num_classes)]) - 1
     for d in range(num_classes):
      for i in range(n):
       z1, z2 = digit_indices[d][i], digit_indices[d][i + 1]
       pairs += [[x[z1], x[z2]]]
       inc = random.randrange(1, num_classes)
       dn = (d + inc) % num_classes
       z1, z2 = digit_indices[d][i], digit_indices[dn][i]
       pairs += [[x[z1], x[z2]]]
       labels += [1, 0]
     return np.array(pairs), np.array(labels)
    
    
    def create_base_network(input_shape):
     '''Base network to be shared (eq. to feature extraction).
     '''
     input = Input(shape=input_shape)
     x = Flatten()(input)
     x = Dense(128, activation='relu')(x)
     x = Dropout(0.1)(x)
     x = Dense(128, activation='relu')(x)
     x = Dropout(0.1)(x)
     x = Dense(128, activation='relu')(x)
     return Model(input, x)
    
    
    def compute_accuracy(y_true, y_pred): # numpy上的操作
     '''Compute classification accuracy with a fixed threshold on distances.
     '''
     pred = y_pred.ravel() < 0.5
     return np.mean(pred == y_true)
    
    
    def accuracy(y_true, y_pred): # Tensor上的操作
     '''Compute classification accuracy with a fixed threshold on distances.
     '''
     return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))
    
    def plot_train_history(history, train_metrics, val_metrics):
     plt.plot(history.history.get(train_metrics), '-o')
     plt.plot(history.history.get(val_metrics), '-o')
     plt.ylabel(train_metrics)
     plt.xlabel('Epochs')
     plt.legend(['train', 'validation'])
    
    
    # the data, split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    input_shape = x_train.shape[1:]
    
    # create training+test positive and negative pairs
    digit_indices = [np.where(y_train == i)[0] for i in range(num_classes)]
    tr_pairs, tr_y = create_pairs(x_train, digit_indices)
    
    digit_indices = [np.where(y_test == i)[0] for i in range(num_classes)]
    te_pairs, te_y = create_pairs(x_test, digit_indices)
    
    # network definition
    base_network = create_base_network(input_shape)
    
    input_a = Input(shape=input_shape)
    input_b = Input(shape=input_shape)
    
    # because we re-use the same instance `base_network`,
    # the weights of the network
    # will be shared across the two branches
    processed_a = base_network(input_a)
    processed_b = base_network(input_b)
    
    distance = Lambda(euclidean_distance,
         output_shape=eucl_dist_output_shape)([processed_a, processed_b])
    
    model = Model([input_a, input_b], distance)
    keras.utils.plot_model(model,"siamModel.png",show_shapes=True)
    model.summary()
    
    # train
    rms = RMSprop()
    model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])
    history=model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y,
       batch_size=128,
       epochs=epochs,verbose=2,
       validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y))
    
    plt.figure(figsize=(8, 4))
    plt.subplot(1, 2, 1)
    plot_train_history(history, 'loss', 'val_loss')
    plt.subplot(1, 2, 2)
    plot_train_history(history, 'accuracy', 'val_accuracy')
    plt.show()
    
    
    # compute final accuracy on training and test sets
    y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
    tr_acc = compute_accuracy(tr_y, y_pred)
    y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
    te_acc = compute_accuracy(te_y, y_pred)
    
    print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))
    print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))

    执行结果:

    最终效果:

  • 相关阅读:
    第十八课 顺序存储线性表的分析
    第十七课 StaticList和DynamicList实现
    第十六课 顺序存储结构的抽象实现
    第十五课 线性表的顺序存储结构
    第十四课 线性表的本质和操作
    第十三课 类族结构的进化
    第十二课 顶层父类的创建
    第十一课 异常类构建
    HDU 5773The All-purpose Zero
    HDU 5755 Gambler Bo
  • 原文地址:https://www.cnblogs.com/huanghanyu/p/13450923.html
Copyright © 2011-2022 走看看