zoukankan      html  css  js  c++  java
  • 项目实战 从 0 到 1 学习之Flink (28)FlinkSql教程(二)

    从kafka到mysql

    新建Java项目

    • 最简单的方式是按照官网的方法,命令行执行curl https://flink.apache.org/q/quickstart.sh | bash -s 1.10.0,不过这种方法有些包还得自行添加,大家可以复制我的pom.xml,我已经将常用的包都放进去了,并且排除了冲突的包。注意的是,本地测试的时候,记得将scope注掉,不然会出现少包的情况。也可以在Run -> Edit Configurations中,勾选Include dependencies with "Provided" scope。最好在resources目录下丢个log4j的配置文件,这样有时候方便我们看日志找问题。

    • 新建完项目之后,我们要做的第一件事,自然是写个Flink 版本的Hello World。所以,新建测试类,然后输入代码

      StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
      
          DataStream dataStream = env.fromElements("Hello World");
      
          dataStream.print();
        
          env.execute("test");

      看一下控制台

       Hello World

      如愿以偿的得到了想要的结果,不过这个4>是什么玩应?其实这个4代表是第四个分区输出的结果。很多人可能会问,我也妹指定并发啊,数据怎么会跑到第四个分区呢?其实是因为本地模式的时候,会以匹配CPU的核数,启动对应数量的分区。只要我们在每个算子之后加上setParallelism(1),就会只以一个分区来执行了。至此,我们的DataStream 版的Hellow World试验完毕,这里主要是为了验证一下环境是否正确,接下来才是我们今天的主题从kafka到mysql。另外,如果更想了解DataStream的内容,欢迎大家关注另一个系列Flink DataStream(不过目前还没开始写)

    新建kafka数据源表

    接下来咱们废话不多说,直接贴代码

    import org.apache.flink.streaming.api.datastream.DataStream;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    import org.apache.flink.table.api.EnvironmentSettings;
    import org.apache.flink.table.api.Table;
    import org.apache.flink.table.api.java.StreamTableEnvironment;
    import org.apache.flink.types.Row;
    
    
    public class FlinkSql02 {
        public static final String  KAFKA_TABLE_SOURCE_DDL = "" +
                "CREATE TABLE user_behavior (
    " +
                "    user_id BIGINT,
    " +
                "    item_id BIGINT,
    " +
                "    category_id BIGINT,
    " +
                "    behavior STRING,
    " +
                "    ts TIMESTAMP(3)
    " +
                ") WITH (
    " +
                "    'connector.type' = 'kafka',  -- 指定连接类型是kafka
    " +
                "    'connector.version' = '0.11',  -- 与我们之前Docker安装的kafka版本要一致
    " +
                "    'connector.topic' = 'mykafka', -- 之前创建的topic 
    " +
                "    'connector.properties.group.id' = 'flink-test-0', -- 消费者组,相关概念可自行百度
    " +
                "    'connector.startup-mode' = 'earliest-offset',  --指定从最早消费
    " +
                "    'connector.properties.zookeeper.connect' = 'localhost:2181',  -- zk地址
    " +
                "    'connector.properties.bootstrap.servers' = 'localhost:9092',  -- broker地址
    " +
                "    'format.type' = 'json'  -- json格式,和topic中的消息格式保持一致
    " +
                ")";
        public static void main(String[] args) throws Exception {
            //构建StreamExecutionEnvironment 
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            
            //构建EnvironmentSettings 并指定Blink Planner
            EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
            
            //构建StreamTableEnvironment 
            StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, bsSettings);
            
            //通过DDL,注册kafka数据源表
            tEnv.sqlUpdate(KAFKA_TABLE_SOURCE_DDL);
            
            //执行查询
            Table table = tEnv.sqlQuery("select * from user_behavior");
            
            //转回DataStream并输出
            tEnv.toAppendStream(table, Row.class).print().setParallelism(1);
    
            //任务启动,这行必不可少!
            env.execute("test");
    
        }
    }

    接下来就是激动人性的测试了,右击,run!查看控制台

    543462,1715,1464116,pv,2017-11-26T01:00
    543462,1715,1464116,pv,2017-11-26T01:00
    543462,1715,1464116,pv,2017-11-26T01:00
    543462,1715,1464116,pv,2017-11-26T01:00

    嗯,跟我之前往kafka中丢的数据一样,没毛病!

    如果大家在使用过程中遇到Caused by: org.apache.flink.table.api.NoMatchingTableFactoryException: Could not find a suitable table factory for 'org.apache.flink.table.factories.TableSourceFactory' in这种异常,请仔细查看你的DDL语句,是否缺少或者用错了配置,这里大家可以参考一下Flink官网的手册,查看一下对应的配置。也可以在下方留言,一起交流。

    新建mysql数据结果表

    • 现在mysql中把表创建,毕竟flink现在还没法帮你自动建表,只能自己动手丰衣足食咯。
    CREATE TABLE `user_behavior` (
      `user_id` bigint(20) DEFAULT NULL,
      `item_id` bigint(20) DEFAULT NULL,
      `behavior` varchar(255) DEFAULT NULL,
      `category_id` bigint(20) DEFAULT NULL,
      `ts` timestamp(6) NULL DEFAULT NULL
    )

    在mysql端创建完成后,回到我们的代码,注册mysql数据结果表,并将从kafka中读取到的数据,插入mysql结果表中。下面是完整代码,包含kafka数据源表的构建。

    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    import org.apache.flink.table.api.EnvironmentSettings;
    import org.apache.flink.table.api.Table;
    import org.apache.flink.table.api.java.StreamTableEnvironment;
    import org.apache.flink.types.Row;
    
    
    public class FlinkSql02 {
        public static final String  KAFKA_TABLE_SOURCE_DDL = "" +
                "CREATE TABLE user_behavior (
    " +
                "    user_id BIGINT,
    " +
                "    item_id BIGINT,
    " +
                "    category_id BIGINT,
    " +
                "    behavior STRING,
    " +
                "    ts TIMESTAMP(3)
    " +
                ") WITH (
    " +
                "    'connector.type' = 'kafka',  -- 指定连接类型是kafka
    " +
                "    'connector.version' = '0.11',  -- 与我们之前Docker安装的kafka版本要一致
    " +
                "    'connector.topic' = 'mykafka', -- 之前创建的topic 
    " +
                "    'connector.properties.group.id' = 'flink-test-0', -- 消费者组,相关概念可自行百度
    " +
                "    'connector.startup-mode' = 'earliest-offset',  --指定从最早消费
    " +
                "    'connector.properties.zookeeper.connect' = 'localhost:2181',  -- zk地址
    " +
                "    'connector.properties.bootstrap.servers' = 'localhost:9092',  -- broker地址
    " +
                "    'format.type' = 'json'  -- json格式,和topic中的消息格式保持一致
    " +
                ")";
    
        public static final String MYSQL_TABLE_SINK_DDL=""+
                "CREATE TABLE `user_behavior_mysql` (
    " +
                "  `user_id` bigint  ,
    " +
                "  `item_id` bigint  ,
    " +
                "  `behavior` varchar  ,
    " +
                "  `category_id` bigint  ,
    " +
                "  `ts` timestamp(3)   
    " +
                ")WITH (
    " +
                "  'connector.type' = 'jdbc', -- 连接方式
    " +
                "  'connector.url' = 'jdbc:mysql://localhost:3306/mysql', -- jdbc的url
    " +
                "  'connector.table' = 'user_behavior',  -- 表名
    " +
                "  'connector.driver' = 'com.mysql.jdbc.Driver', -- 驱动名字,可以不填,会自动从上面的jdbc url解析 
    " +
                "  'connector.username' = 'root', -- 顾名思义 用户名
    " +
                "  'connector.password' = '123456' , -- 密码
    " +
                "  'connector.write.flush.max-rows' = '5000', -- 意思是攒满多少条才触发写入 
    " +
                "  'connector.write.flush.interval' = '2s' -- 意思是攒满多少秒才触发写入;这2个参数,无论数据满足哪个条件,就会触发写入
    "+
                ")"
    
    
    
                ;
        public static void main(String[] args) throws Exception {
            //构建StreamExecutionEnvironment 
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            
            //构建EnvironmentSettings 并指定Blink Planner
            EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
            
            //构建StreamTableEnvironment 
            StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, bsSettings);
            
            //通过DDL,注册kafka数据源表
            tEnv.sqlUpdate(KAFKA_TABLE_SOURCE_DDL);
    
            //通过DDL,注册mysql数据结果表
            tEnv.sqlUpdate(MYSQL_TABLE_SINK_DDL);
            
            //将从kafka中查到的数据,插入mysql中
            tEnv.sqlUpdate("insert into user_behavior_mysql select user_id,item_id,behavior,category_id,ts from user_behavior");
            
            //任务启动,这行必不可少!
            env.execute("test");
    
        }
    }

    打开我们的Navicat,看看我们的数据是否正确输入到mysql中。

    user_iditem_idbehaviorcategory_idts
    543462 1715 pv 1464116 2017-11-26 01:00:00.000
    543462 1715 pv 1464116 2017-11-26 01:00:00.000
    543462 1715 pv 1464116 2017-11-26 01:00:00.000
    543462 1715 pv 1464116 2017-11-26 01:00:00.000

    成功!并且数据和我们kafka中的数据也是一致,大家也可以通过上一章讲过的Java连接kafka来对比验证数据的一致性,此处就不再赘述。那么好了,本次的Flink Sql之旅就结束,下一章我们将带大家,在这次课程的基础上,完成常用聚合查询以及目前Flink Sql原生支持的维表Join。另外,有同学反映有些地方不知道为什么要这样做,不想只知其然而不知所以然,我们之后同样会有另外的专题讲述Flink 原理。

    附录

    pom.xml

        
        <properties>
            <flink.version>1.10.0</flink.version>
            <scala.binary.version>2.11</scala.binary.version>
        </properties>
    
        <dependencies>
            <!-- Flink modules -->
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-table-api-java</artifactId>
                <version>${flink.version}</version>
                <scope>provided</scope>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
                <version>${flink.version}</version>
    
                <scope>provided</scope>
                <exclusions>
                    <exclusion>
                        <artifactId>scala-library</artifactId>
                        <groupId>org.scala-lang</groupId>
                    </exclusion>
                    <exclusion>
                        <artifactId>slf4j-api</artifactId>
                        <groupId>org.slf4j</groupId>
                    </exclusion>
                </exclusions>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-json</artifactId>
                <version>1.10.0</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-table-planner_${scala.binary.version}</artifactId>
                <version>${flink.version}</version>
                <scope>provided</scope>
            </dependency>
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-jdbc_2.11</artifactId>
                <version>${flink.version}</version>
                <scope>provided</scope>
            </dependency>
    
            <!-- CLI dependencies -->
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-clients_2.11</artifactId>
                <version>${flink.version}</version>
                <scope>provided</scope>
                <exclusions>
                    <exclusion>
                        <artifactId>javassist</artifactId>
                        <groupId>org.javassist</groupId>
                    </exclusion>
                    <exclusion>
                        <artifactId>scala-parser-combinators_2.11</artifactId>
                        <groupId>org.scala-lang.modules</groupId>
                    </exclusion>
                    <exclusion>
                        <artifactId>slf4j-api</artifactId>
                        <groupId>org.slf4j</groupId>
                    </exclusion>
                    <exclusion>
                        <artifactId>snappy-java</artifactId>
                        <groupId>org.xerial.snappy</groupId>
                    </exclusion>
                </exclusions>
            </dependency>
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-java</artifactId>
                <version>${flink.version}</version>
                <scope>provided</scope>
            </dependency>
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
                <version>${flink.version}</version>
                <scope>provided</scope>
            </dependency>
            <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
            <dependency>
                <groupId>org.apache.kafka</groupId>
                <artifactId>kafka-clients</artifactId>
                <version>0.11.0.3</version>
                <exclusions>
                    <exclusion>
                        <artifactId>slf4j-api</artifactId>
                        <groupId>org.slf4j</groupId>
                    </exclusion>
                </exclusions>
            </dependency>
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-connector-kafka-0.11_${scala.binary.version}</artifactId>
                <version>${flink.version}</version>
                <exclusions>
                    <exclusion>
                        <artifactId>kafka-clients</artifactId>
                        <groupId>org.apache.kafka</groupId>
                    </exclusion>
                </exclusions>
            </dependency>
    
            <!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <version>5.1.37</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-connector-redis_2.11</artifactId>
                <version>1.1.5</version>
                <exclusions>
                    <exclusion>
                        <artifactId>force-shading</artifactId>
                        <groupId>org.apache.flink</groupId>
                    </exclusion>
                    <exclusion>
                        <artifactId>slf4j-api</artifactId>
                        <groupId>org.slf4j</groupId>
                    </exclusion>
                </exclusions>
            </dependency>
    
            <dependency>
                <groupId>com.fasterxml.jackson.core</groupId>
                <artifactId>jackson-core</artifactId>
                <version>2.9.5</version>
            </dependency>
    
            <dependency>
                <groupId>io.lettuce</groupId>
                <artifactId>lettuce-core</artifactId>
                <version>5.0.5.RELEASE</version>
            </dependency>
            <!-- https://mvnrepository.com/artifact/com.alibaba/fastjson -->
            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>fastjson</artifactId>
                <version>1.2.46</version>
            </dependency>
    
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-table-api-java-bridge_2.11</artifactId>
                <version>1.10.0</version>
                <scope>provided</scope>
            </dependency>
    
            <dependency>
                <groupId>io.netty</groupId>
                <artifactId>netty-all</artifactId>
                <version>4.1.4.Final</version>
            </dependency>
    
            <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-jdbc -->
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-jdbc_2.11</artifactId>
                <version>1.10.0</version>
            </dependency>
    
        </dependencies>
        <build>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.8.1</version>
                    <configuration>
                        <encoding>UTF-8</encoding>
                        <source>1.8</source>
                        <target>1.8</target>
                    </configuration>
                </plugin>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-shade-plugin</artifactId>
                    <version>2.4.3</version>
                    <executions>
                        <execution>
                            <phase>package</phase>
                            <goals>
                                <goal>shade</goal>
                            </goals>
                            <configuration>
                                <filters>
                                    <filter>
                                        <artifact>*:*</artifact>
                                        <excludes>
                                            <exclude>META-INF/*.SF</exclude>
                                            <exclude>META-INF/*.DSA</exclude>
                                            <exclude>META-INF/*.RSA</exclude>
                                        </excludes>
                                    </filter>
                                </filters>
                                <artifactSet>
                                    <excludes>
                                        <exclude>junit:junit</exclude>
                                    </excludes>
                                </artifactSet>
    
                            </configuration>
                        </execution>
                    </executions>
                </plugin>
            </plugins>
        </build>

    有点乱,懒得整理了,大家直接复制过去用就行。

    log4j.xml

    <?xml version="1.0" encoding="UTF-8"?>
    <!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
    
    <log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/' >
    
        <appender name="myConsole" class="org.apache.log4j.ConsoleAppender">
            <layout class="org.apache.log4j.PatternLayout">
                <param name="ConversionPattern"
                       value="[%d{dd HH:mm:ss,SSS} %-5p] [%t] %c{2} - %m%n" />
            </layout>
            <!--过滤器设置输出的级别-->
            <filter class="org.apache.log4j.varia.LevelRangeFilter">
                <param name="levelMin" value="info" />
                <param name="levelMax" value="error" />
                <param name="AcceptOnMatch" value="true" />
            </filter>
        </appender>
    
        <!-- 指定logger的设置,additivity指示是否遵循缺省的继承机制-->
        <logger name="com.runway.bssp.activeXdemo" additivity="false">
            <appender-ref ref="myConsole" />
        </logger>
    
        <!-- 根logger的设置-->
        <root>
            <priority value ="debug"/>
            <appender-ref ref="myConsole"/>
        </root>
    </log4j:configuration>

    记得要放在resource目录下,别放错了。

     
    作者:大码王

    -------------------------------------------

    个性签名:独学而无友,则孤陋而寡闻。做一个灵魂有趣的人!

    如果觉得这篇文章对你有小小的帮助的话,记得在右下角点个“推荐”哦,博主在此感谢!

    万水千山总是情,打赏一分行不行,所以如果你心情还比较高兴,也是可以扫码打赏博主,哈哈哈(っ•?ω•?)っ???!

  • 相关阅读:
    MYSQL查看数据表最后更新时间
    linux在终端模拟软件实现文件上传下载
    yum常用操作
    释放Linux占用端口
    CentOS7.3编译安装MariaDB10.2.6
    CentOS7编译安装Nginx1.10.1
    Linux系统安装ActiveMQ时遇到服务无法启动的问题
    需求分析读书笔记(一)
    实用地址分享
    元素居中汇总
  • 原文地址:https://www.cnblogs.com/huanghanyu/p/13913241.html
Copyright © 2011-2022 走看看