zoukankan      html  css  js  c++  java
  • sklearn学习--特征选择

    特征选择

    当特征特别多的时候,且有冗余的情况下,对特征进行选择不仅能使训练速度加快,还可以排除一些负面特征的干扰。sklearnfeature_seletion提供了它许多特征选取函数,目前包括单变量选择方法递归特征消除算法。它们均为转化器,故在此不举例说明如何使用。

    除了使用feature_seletion的方法选取特征外,我们也可以选择那些带有特征选择的模型进行选择特征,例如随机森林会根据特征的重要程度对特征打分。

    Pineline

    使用pineline可以按顺序构建从数据处理到和训练模型的整个过程。pineline中间的步骤必须转化器(对数据进行处理)。使用pineline的好处就是可以封装一个学习的过程,使得重新调用这个过程变得更加方便。中间的过程用多个二元组组成的列表表示。

    from sklearn.pipeline import Pipeline
    from sklearn.decomposition import PCA
    pca = PCA(n_components=2)
    clf = LogisticRegression()
    new_clf = Pipeline([('pca',pca),('clf',clf)]) 

    上面的封装的估计器,会先用PCA将数据降至两维,在用逻辑回归去拟合。

  • 相关阅读:
    关于iOS中页面启动加载的相关问题汇总
    文件上传与解析漏洞
    XSS跨站攻击
    SQL注入
    DOS&&Linux命令大全
    信息收集相关
    进制转化
    PYQT5 in Python
    将博客搬至CSDN
    Python报文操作模块scapy
  • 原文地址:https://www.cnblogs.com/huangmouren233/p/14912542.html
Copyright © 2011-2022 走看看