zoukankan      html  css  js  c++  java
  • TCP的.cc文件代码解释(中文)

    #ifndef lint
    static const char rcsid[] =
        "@(#) $Header: /nfs/jade/vint/CVSROOT/ns-2/tcp/tcp.cc,v 1.163 2005/06/21 01:48:24 sfloyd Exp $ (LBL)";
    #endif

    #include <stdlib.h>
    #include <math.h>
    #include <sys/types.h>
    #include "ip.h"
    #include "tcp.h"
    #include "flags.h"
    #include "random.h"
    #include "basetrace.h"
    #include "hdr_qs.h"

    int hdr_tcp::offset_;

    static class TCPHeaderClass : public PacketHeaderClass {
    public:
            TCPHeaderClass() : PacketHeaderClass("PacketHeader/TCP",
              sizeof(hdr_tcp)) {
      bind_offset(&hdr_tcp::offset_);
     }
    } class_tcphdr;

    static class TcpClass : public TclClass {
    public:
     TcpClass() : TclClass("Agent/TCP") {}
     TclObject* create(int , const char*const*) {
      return (new TcpAgent());
     }
    } class_tcp;

    TcpAgent::TcpAgent() 
     : Agent(PT_TCP), 
       t_seqno_(0), t_rtt_(0), t_srtt_(0), t_rttvar_(0), 
       t_backoff_(0), ts_peer_(0), ts_echo_(0),
       tss(NULL), tss_size_(100), 
       rtx_timer_(this), delsnd_timer_(this), burstsnd_timer_(this), 
       dupacks_(0), curseq_(0), highest_ack_(0), cwnd_(0), ssthresh_(0), 
       maxseq_(0), count_(0), rtt_active_(0), rtt_seq_(-1), rtt_ts_(0.0), 
       lastreset_(0.0), closed_(0), first_decrease_(1), fcnt_(0), 
       nrexmit_(0), restart_bugfix_(1), cong_action_(0), 
       ecn_burst_(0), ecn_backoff_(0), ect_(0), 
       qs_requested_(0), qs_approved_(0),
       qs_window_(0), qs_cwnd_(0), frto_(0)
     
    {
    #ifdef TCP_DELAY_BIND_ALL
    #else /* ! TCP_DELAY_BIND_ALL */
     // not delay-bound because delay-bound tracevars aren't yet supported
     bind("t_seqno_", &t_seqno_);
     bind("rtt_", &t_rtt_);
     bind("srtt_", &t_srtt_);
     bind("rttvar_", &t_rttvar_);
     bind("backoff_", &t_backoff_);
     bind("dupacks_", &dupacks_);
     bind("seqno_", &curseq_);
     bind("ack_", &highest_ack_);
     bind("cwnd_", &cwnd_);
     bind("ssthresh_", &ssthresh_);
     bind("maxseq_", &maxseq_);
            bind("ndatapack_", &ndatapack_);
            bind("ndatabytes_", &ndatabytes_);
            bind("nackpack_", &nackpack_);
            bind("nrexmit_", &nrexmit_);
            bind("nrexmitpack_", &nrexmitpack_);
            bind("nrexmitbytes_", &nrexmitbytes_);
            bind("necnresponses_", &necnresponses_);
            bind("ncwndcuts_", &ncwndcuts_);
     bind("ncwndcuts1_", &ncwndcuts1_);
    #endif /* TCP_DELAY_BIND_ALL */

    }

    void
    TcpAgent::delay_bind_init_all()
    {

            // Defaults for bound variables should be set in ns-default.tcl.
            delay_bind_init_one("window_");
            delay_bind_init_one("windowInit_");
            delay_bind_init_one("windowInitOption_");

            delay_bind_init_one("syn_");
            delay_bind_init_one("windowOption_");
            delay_bind_init_one("windowConstant_");
            delay_bind_init_one("windowThresh_");
            delay_bind_init_one("delay_growth_");
            delay_bind_init_one("overhead_");
            delay_bind_init_one("tcpTick_");
            delay_bind_init_one("ecn_");
            delay_bind_init_one("SetCWRonRetransmit_");
            delay_bind_init_one("old_ecn_");
            delay_bind_init_one("eln_");
            delay_bind_init_one("eln_rxmit_thresh_");
            delay_bind_init_one("packetSize_");
            delay_bind_init_one("tcpip_base_hdr_size_");
     delay_bind_init_one("ts_option_size_");
            delay_bind_init_one("bugFix_");
     delay_bind_init_one("bugFix_ack_");
     delay_bind_init_one("bugFix_ts_");
     delay_bind_init_one("lessCareful_");
            delay_bind_init_one("slow_start_restart_");
            delay_bind_init_one("restart_bugfix_");
            delay_bind_init_one("timestamps_");
     delay_bind_init_one("ts_resetRTO_");
            delay_bind_init_one("maxburst_");
     delay_bind_init_one("aggressive_maxburst_");
            delay_bind_init_one("maxcwnd_");
     delay_bind_init_one("numdupacks_");
     delay_bind_init_one("numdupacksFrac_");
     delay_bind_init_one("exitFastRetrans_");
            delay_bind_init_one("maxrto_");
     delay_bind_init_one("minrto_");
            delay_bind_init_one("srtt_init_");
            delay_bind_init_one("rttvar_init_");
            delay_bind_init_one("rtxcur_init_");
            delay_bind_init_one("T_SRTT_BITS");
            delay_bind_init_one("T_RTTVAR_BITS");
            delay_bind_init_one("rttvar_exp_");
            delay_bind_init_one("awnd_");
            delay_bind_init_one("decrease_num_");
            delay_bind_init_one("increase_num_");
     delay_bind_init_one("k_parameter_");
     delay_bind_init_one("l_parameter_");
            delay_bind_init_one("trace_all_oneline_");
            delay_bind_init_one("nam_tracevar_");

            delay_bind_init_one("QOption_");
            delay_bind_init_one("EnblRTTCtr_");
            delay_bind_init_one("control_increase_");
     delay_bind_init_one("noFastRetrans_");
     delay_bind_init_one("precisionReduce_");
     delay_bind_init_one("oldCode_");
     delay_bind_init_one("useHeaders_");
     delay_bind_init_one("low_window_");
     delay_bind_init_one("high_window_");
     delay_bind_init_one("high_p_");
     delay_bind_init_one("high_decrease_");
     delay_bind_init_one("max_ssthresh_");
     delay_bind_init_one("cwnd_range_");
     delay_bind_init_one("timerfix_");
     delay_bind_init_one("rfc2988_");
     delay_bind_init_one("singledup_");
     delay_bind_init_one("LimTransmitFix_");
     delay_bind_init_one("rate_request_");
     delay_bind_init_one("qs_enabled_");
     delay_bind_init_one("tcp_qs_recovery_");
     delay_bind_init_one("qs_request_mode_");
     delay_bind_init_one("qs_thresh_");
     delay_bind_init_one("qs_rtt_");

     delay_bind_init_one("frto_enabled_");
     delay_bind_init_one("sfrto_enabled_");
     delay_bind_init_one("spurious_response_");

    #ifdef TCP_DELAY_BIND_ALL
     // out because delay-bound tracevars aren't yet supported
            delay_bind_init_one("t_seqno_");
            delay_bind_init_one("rtt_");
            delay_bind_init_one("srtt_");
            delay_bind_init_one("rttvar_");
            delay_bind_init_one("backoff_");
            delay_bind_init_one("dupacks_");
            delay_bind_init_one("seqno_");
            delay_bind_init_one("ack_");
            delay_bind_init_one("cwnd_");
            delay_bind_init_one("ssthresh_");
            delay_bind_init_one("maxseq_");
            delay_bind_init_one("ndatapack_");
            delay_bind_init_one("ndatabytes_");
            delay_bind_init_one("nackpack_");
            delay_bind_init_one("nrexmit_");
            delay_bind_init_one("nrexmitpack_");
            delay_bind_init_one("nrexmitbytes_");
            delay_bind_init_one("necnresponses_");
            delay_bind_init_one("ncwndcuts_");
     delay_bind_init_one("ncwndcuts1_");
    #endif /* TCP_DELAY_BIND_ALL */

     Agent::delay_bind_init_all();

            reset();
    }

    int
    TcpAgent::delay_bind_dispatch(const char *varName, const char *localName, TclObject *tracer)
    {
            if (delay_bind(varName, localName, "window_", &wnd_, tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "windowInit_", &wnd_init_, tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "windowInitOption_", &wnd_init_option_, tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "syn_", &syn_, tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "windowOption_", &wnd_option_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "windowConstant_",  &wnd_const_, tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "windowThresh_", &wnd_th_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "delay_growth_", &delay_growth_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "overhead_", &overhead_, tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "tcpTick_", &tcp_tick_, tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "ecn_", &ecn_, tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "SetCWRonRetransmit_", &SetCWRonRetransmit_, tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "old_ecn_", &old_ecn_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "eln_", &eln_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "eln_rxmit_thresh_", &eln_rxmit_thresh_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "packetSize_", &size_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "tcpip_base_hdr_size_", &tcpip_base_hdr_size_, tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "ts_option_size_", &ts_option_size_, tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "bugFix_", &bug_fix_ , tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "bugFix_ack_", &bugfix_ack_, tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "bugFix_ts_", &bugfix_ts_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "lessCareful_", &less_careful_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "timestamps_", &ts_option_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "ts_resetRTO_", &ts_resetRTO_, tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "slow_start_restart_", &slow_start_restart_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "restart_bugfix_", &restart_bugfix_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "maxburst_", &maxburst_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "aggressive_maxburst_", &aggressive_maxburst_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "maxcwnd_", &maxcwnd_ , tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "numdupacks_", &numdupacks_, tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "numdupacksFrac_", &numdupacksFrac_, tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "exitFastRetrans_", &exitFastRetrans_, tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "maxrto_", &maxrto_ , tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "minrto_", &minrto_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "srtt_init_", &srtt_init_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "rttvar_init_", &rttvar_init_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "rtxcur_init_", &rtxcur_init_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "T_SRTT_BITS", &T_SRTT_BITS , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "T_RTTVAR_BITS", &T_RTTVAR_BITS , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "rttvar_exp_", &rttvar_exp_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "awnd_", &awnd_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "decrease_num_", &decrease_num_, tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "increase_num_", &increase_num_, tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "k_parameter_", &k_parameter_, tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "l_parameter_", &l_parameter_, tracer)) return TCL_OK;


            if (delay_bind_bool(varName, localName, "trace_all_oneline_", &trace_all_oneline_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "nam_tracevar_", &nam_tracevar_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "QOption_", &QOption_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "EnblRTTCtr_", &EnblRTTCtr_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "control_increase_", &control_increase_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "noFastRetrans_", &noFastRetrans_, tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "precisionReduce_", &precision_reduce_, tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "oldCode_", &oldCode_, tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "useHeaders_", &useHeaders_, tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "low_window_", &low_window_, tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "high_window_", &high_window_, tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "high_p_", &high_p_, tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "high_decrease_", &high_decrease_, tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "max_ssthresh_", &max_ssthresh_, tracer)) return TCL_OK;
     if (delay_bind(varName, localName, "cwnd_range_", &cwnd_range_, tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "timerfix_", &timerfix_, tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "rfc2988_", &rfc2988_, tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "singledup_", &singledup_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "LimTransmitFix_", &LimTransmitFix_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "rate_request_", &rate_request_ , tracer)) return TCL_OK;
            if (delay_bind_bool(varName, localName, "qs_enabled_", &qs_enabled_ , tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "tcp_qs_recovery_", &tcp_qs_recovery_, tracer)) return TCL_OK;

     if (delay_bind_bool(varName, localName, "frto_enabled_", &frto_enabled_, tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "sfrto_enabled_", &sfrto_enabled_, tracer)) return TCL_OK;
     if (delay_bind_bool(varName, localName, "spurious_response_", &spurious_response_, tracer)) return TCL_OK;


    #ifdef TCP_DELAY_BIND_ALL
     // not if (delay-bound delay-bound tracevars aren't yet supported
            if (delay_bind(varName, localName, "t_seqno_", &t_seqno_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "rtt_", &t_rtt_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "srtt_", &t_srtt_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "rttvar_", &t_rttvar_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "backoff_", &t_backoff_ , tracer)) return TCL_OK;

            if (delay_bind(varName, localName, "dupacks_", &dupacks_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "seqno_", &curseq_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "ack_", &highest_ack_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "cwnd_", &cwnd_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "ssthresh_", &ssthresh_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "maxseq_", &maxseq_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "ndatapack_", &ndatapack_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "ndatabytes_", &ndatabytes_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "nackpack_", &nackpack_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "nrexmit_", &nrexmit_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "nrexmitpack_", &nrexmitpack_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "nrexmitbytes_", &nrexmitbytes_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "necnresponses_", &necnresponses_ , tracer)) return TCL_OK;
            if (delay_bind(varName, localName, "ncwndcuts_", &ncwndcuts_ , tracer)) return TCL_OK;
      if (delay_bind(varName, localName, "ncwndcuts1_", &ncwndcuts1_ , tracer)) return TCL_OK;

    #endif

            return Agent::delay_bind_dispatch(varName, localName, tracer);
    }

    #define TCP_WRK_SIZE  512
    /* Print out all the traced variables whenever any one is changed */
    void
    TcpAgent::traceAll() {
     if (!channel_)
      return;

     double curtime;
     Scheduler& s = Scheduler::instance();
     char wrk[TCP_WRK_SIZE];

     curtime = &s ? s.clock() : 0;
     snprintf(wrk, TCP_WRK_SIZE,
       "time: %-8.5f saddr: %-2d sport: %-2d daddr: %-2d dport:"
       " %-2d maxseq: %-4d hiack: %-4d seqno: %-4d cwnd: %-6.3f"
       " ssthresh: %-3d dupacks: %-2d rtt: %-6.3f srtt: %-6.3f"
       " rttvar: %-6.3f bkoff: %-d/n", curtime, addr(), port(),
       daddr(), dport(), int(maxseq_), int(highest_ack_),
       int(t_seqno_), double(cwnd_), int(ssthresh_),
       int(dupacks_), int(t_rtt_)*tcp_tick_, 
       (int(t_srtt_) >> T_SRTT_BITS)*tcp_tick_, 
       int(t_rttvar_)*tcp_tick_/4.0, int(t_backoff_)); 
     (void)Tcl_Write(channel_, wrk, -1);
    }

    /* Print out just the variable that is modified */
    void
    TcpAgent::traceVar(TracedVar* v) 
    {
     if (!channel_)
      return;

     double curtime;
     Scheduler& s = Scheduler::instance();
     char wrk[TCP_WRK_SIZE];

     curtime = &s ? s.clock() : 0;

     // XXX comparing addresses is faster than comparing names
     if (v == &cwnd_)
      snprintf(wrk, TCP_WRK_SIZE,
        "%-8.5f %-2d %-2d %-2d %-2d %s %-6.3f/n",
        curtime, addr(), port(), daddr(), dport(),
        v->name(), double(*((TracedDouble*) v))); 
      else if (v == &t_rtt_)
      snprintf(wrk, TCP_WRK_SIZE,
        "%-8.5f %-2d %-2d %-2d %-2d %s %-6.3f/n",
        curtime, addr(), port(), daddr(), dport(),
        v->name(), int(*((TracedInt*) v))*tcp_tick_); 
     else if (v == &t_srtt_)
      snprintf(wrk, TCP_WRK_SIZE,
        "%-8.5f %-2d %-2d %-2d %-2d %s %-6.3f/n",
        curtime, addr(), port(), daddr(), dport(),
        v->name(), 
        (int(*((TracedInt*) v)) >> T_SRTT_BITS)*tcp_tick_); 
     else if (v == &t_rttvar_)
      snprintf(wrk, TCP_WRK_SIZE,
        "%-8.5f %-2d %-2d %-2d %-2d %s %-6.3f/n",
        curtime, addr(), port(), daddr(), dport(),
        v->name(), 
        int(*((TracedInt*) v))*tcp_tick_/4.0); 
     else
      snprintf(wrk, TCP_WRK_SIZE,
        "%-8.5f %-2d %-2d %-2d %-2d %s %d/n",
        curtime, addr(), port(), daddr(), dport(),
        v->name(), int(*((TracedInt*) v)));

     (void)Tcl_Write(channel_, wrk, -1);
    }

    void
    TcpAgent::trace(TracedVar* v) 
    {
     if (nam_tracevar_) {
      Agent::trace(v);
     } else if (trace_all_oneline_)
      traceAll();
     else 
      traceVar(v);
    }

    //
    // in 1-way TCP, syn_ indicates we are modeling
    // a SYN exchange at the beginning.  If this is true
    // and we are delaying growth, then use an initial
    // window of one.  If not, we do whatever initial_window()
    // says to do.
    //

    void
    TcpAgent::set_initial_window()              //初始化CWND
    {
     if (syn_ && delay_growth_)         
      cwnd_ = 1.0;                 //连接开始,初始窗口为1
     else
      cwnd_ = initial_window();   //
    }

    void
    TcpAgent::reset_qoption()
    {
     int now = (int)(Scheduler::instance().clock()/tcp_tick_ + 0.5);

     T_start = now ; 
     RTT_count = 0 ; 
     RTT_prev = 0 ; 
     RTT_goodcount = 1 ; 
     F_counting = 0 ; 
     W_timed = -1 ; 
     F_full = 0 ;
     Backoffs = 0 ; 
    }


    //reset()仅被delay_bind_init_all()调用,用于初始化参数
    void
    TcpAgent::reset()
    {
     rtt_init();
     rtt_seq_ = -1;
     /*XXX lookup variables */
     dupacks_ = 0;
     curseq_ = 0;
     set_initial_window();

     t_seqno_ = 0;
     maxseq_ = -1;
     last_ack_ = -1;
     highest_ack_ = -1;
     ssthresh_ = int(wnd_);        //wnd_默认为20,SSTHRESH初始也为20
     if (max_ssthresh_ > 0 && max_ssthresh_ < ssthresh_) 
      ssthresh_ = max_ssthresh_;         //max_ssthresh_默认为0,表示无限
     wnd_restart_ = 1.;
     awnd_ = wnd_init_ / 2.0;
     recover_ = 0;
     closed_ = 0;
     last_cwnd_action_ = 0;
     boot_time_ = Random::uniform(tcp_tick_);    //计算RTT时用到,用来模拟系统启动时间(在两个TCP时钟之间)
     first_decrease_ = 1;                       //用于在slowdown()中判断是否第一次减少CWND,=1,是
     /* W.N.: for removing packets from previous incarnations */
     lastreset_ = Scheduler::instance().clock();

     /* Now these variables will be reset 
        - Debojyoti Dutta 12th Oct'2000 */
     
     ndatapack_ = 0;
     ndatabytes_ = 0;
     nackpack_ = 0;
     nrexmitbytes_ = 0;
     nrexmit_ = 0;
     nrexmitpack_ = 0;
     necnresponses_ = 0;
     ncwndcuts_ = 0;
     ncwndcuts1_ = 0;

     if (control_increase_) {
      prev_highest_ack_ = highest_ack_ ; 
     }

     if (wnd_option_ == 8) {
      // HighSpeed TCP
      hstcp_.low_p = 1.5/(low_window_*low_window_);
      double highLowWin = log(high_window_)-log(low_window_);
      double highLowP = log(high_p_) - log(hstcp_.low_p);
      hstcp_.dec1 = 
         0.5 - log(low_window_) * (high_decrease_ - 0.5)/highLowWin;
      hstcp_.dec2 = (high_decrease_ - 0.5)/highLowWin;
             hstcp_.p1 = 
        log(hstcp_.low_p) - log(low_window_) * highLowP/highLowWin;
      hstcp_.p2 = highLowP/highLowWin;
     }

     if (QOption_) {
      int now = (int)(Scheduler::instance().clock()/tcp_tick_ + 0.5);
      T_last = now ; 
      T_prev = now ; 
      W_used = 0 ;
      if (EnblRTTCtr_) {
       reset_qoption();
      }
     }
    }

     

    /*仅在reset()作初始化时调用,reset()又被delay_bind_init_all()调用
     * Initialize variables for the retransmit timer.
     */
    void TcpAgent::rtt_init()       //初始化RTT、SRTT、RTTVAR、RTXCUR和回退(补偿)因子
    {
     t_rtt_ = 0;        
     t_srtt_ = int(srtt_init_ / tcp_tick_) << T_SRTT_BITS;
     t_rttvar_ = int(rttvar_init_ / tcp_tick_) << T_RTTVAR_BITS;
     t_rtxcur_ = rtxcur_init_;             //初始化重传定时时间
     t_backoff_ = 1;
    }

     

    //由set_rtx_timer()调用rtt_timeout()设定超时值
    double TcpAgent::rtt_timeout()          //根据给定的t_rtxcur_(考虑上下限和回退因子)
    {
     double timeout;
     if (rfc2988_) {           //按rfc2988的算法,不同处在于2988的minrto要乘回退因子,默认为FALSE
     // Correction from Tom Kelly to be RFC2988-compliant, by
     // clamping minrto_ before applying t_backoff_.
      if (t_rtxcur_ < minrto_)                   //重传超时值不能小于最小RTO
       timeout = minrto_ * t_backoff_;    //否则按最小值算 
      else
       timeout = t_rtxcur_ * t_backoff_;  //按给定值RTXCUR算,都要乘回退因子
     } else {
      timeout = t_rtxcur_ * t_backoff_;    
      if (timeout < minrto_)
       timeout = minrto_;
     }

     if (timeout > maxrto_)                   //限制最大超时值
      timeout = maxrto_;

            if (timeout < 2.0 * tcp_tick_) {     //超时值为负则退出,小于2个tcp时钟则为2个tcp时钟
      if (timeout < 0) {
       fprintf(stderr, "TcpAgent: negative RTO!  (%f)/n",
        timeout);
       exit(1);
      }
      timeout = 2.0 * tcp_tick_;
     }
     return (timeout);
    }

     

    //由newack()调用,再由recv_newack_helper()调用,最终由recv()调用
    //算得的t_rtxcur_由rtt_timeout()调用,再由set_rtx_timer()调用rtt_timeout设定超时值,set_rtx_timer()主要由output()等调用
    /* This has been modified to use the tahoe code. */
    void TcpAgent::rtt_update(double tao)      //更新RTT,将双精度的RTT转化成整数的RTT,由此计算t_rtxcur_
    {                                                          //tao为newack()中的now-ts_echo或now-rtt_ts_,相当于未整数化的RTT
     double now = Scheduler::instance().clock();
     if (ts_option_)                                  //采用回应时间戳的情况,默认不采用
      t_rtt_ = int(tao /tcp_tick_ + 0.5);     //RTT整数化,+0.5表示不四舍五入,只要有小数,都入。其中tcp_tick_默认为0.01,即RTT的值精确到0.01秒
     else {                                              //不采用时间戳的情况
      double sendtime = now - tao;         //计算本端发送该序号的时间
      sendtime += boot_time_;               //发送时间要加上boot时间,boot时间用于系统模拟启动时间??是个随机数,小于一个tcp嘀哒
      double tickoff = fmod(sendtime, tcp_tick_);        //取发送时间对tcp_tick_取模的余数,是整数
      t_rtt_ = int((tao + tickoff) / tcp_tick_);     //计算不采用时间戳的RTT时间 
     }
     if (t_rtt_ < 1)          //rtt不能小于一个TCP时钟周期
      t_rtt_ = 1;
     //
     // t_srtt_ has 3 bits to the right of the binary point
     // t_rttvar_ has 2
            // Thus "t_srtt_ >> T_SRTT_BITS" is the actual srtt, 
       //   and "t_srtt_" is 8*srtt.
     // Similarly, "t_rttvar_ >> T_RTTVAR_BITS" is the actual rttvar,
     //   and "t_rttvar_" is 4*rttvar.
     //以下计算srtt和varrtt,算法不必关心
            if (t_srtt_ != 0) {
      register short delta;
      delta = t_rtt_ - (t_srtt_ >> T_SRTT_BITS); // d = (m - a0)
      if ((t_srtt_ += delta) <= 0) // srtt的计算:a1 = 7/8 a0 + 1/8 m
       t_srtt_ = 1;
      if (delta < 0)
       delta = -delta;
      delta -= (t_rttvar_ >> T_RTTVAR_BITS);
      if ((t_rttvar_ += delta) <= 0) // varrtt的计算:var1 = 3/4 var0 + 1/4 |d|
       t_rttvar_ = 1;
     } else {
      t_srtt_ = t_rtt_ << T_SRTT_BITS;  // srtt = rtt
      t_rttvar_ = t_rtt_ << (T_RTTVAR_BITS-1); // rttvar = rtt / 2
     }
     //
     // Current retransmit value is 
     //    (unscaled) smoothed round trip estimate
     //    plus 2^rttvar_exp_ times (unscaled) rttvar. 
     //
     //计算重传超时时间RTO= SRTT + max (G, K*RTTVAR),算法不必关心
     t_rtxcur_ = (((t_rttvar_ << (rttvar_exp_ + (T_SRTT_BITS - T_RTTVAR_BITS))) +
      t_srtt_)  >> T_SRTT_BITS ) * tcp_tick_;

     return;
    }


    //在reset_rtx_timer()中使用,t_backoff用于在重传超时时对RTO进行翻倍
    void TcpAgent::rtt_backoff()
    {
     if (t_backoff_ < 64)          /*t_backoff_即RTO补偿因子,初始化为0,启动后为1,
                                     最大为64,即最大重传超时时间为:最初的RTO*64 */
      t_backoff_ <<= 1;     //每次补偿因子*2

     if (t_backoff_ > 8) {         //补偿因子>8,说明重发了3次以上,则对rtt平均偏差和平滑值做出修正
      /*
       * If backed off this far, clobber the srtt
       * value, storing it in the mean deviation
       * instead.
       */
      t_rttvar_ += (t_srtt_ >> T_SRTT_BITS);
      t_srtt_ = 0;
     }
    }

    /*
     * headersize:
     *      how big is an IP+TCP header in bytes; include options such as ts
     * this function should be virtual so others (e.g. SACK) can override
     */
    int TcpAgent::headersize()  //IP+TCP头大小=基本头大小+时间选项大小      
    {
            int total = tcpip_base_hdr_size_;
     if (total < 1) {
      fprintf(stderr,
        "TcpAgent(%s): warning: tcpip hdr size is only %d bytes/n",
        name(), tcpip_base_hdr_size_);
     }
     if (ts_option_)
      total += ts_option_size_;
            return (total);
    }

    //output()发送单个分组,被send_much、send_one等调用,不直接使用
    void TcpAgent::output(int seqno, int reason)     //reason表示重发原因,本端不用,传给对端用    
    {
     int force_set_rtx_timer = 0;                        //后面有highest_ack_ == maxseq_时,该值为0
     Packet* p = allocpkt();
     hdr_tcp *tcph = hdr_tcp::access(p);
     hdr_flags* hf = hdr_flags::access(p);
     hdr_ip *iph = hdr_ip::access(p);
     int databytes = hdr_cmn::access(p)->size();    //记录本分组的字节数
     tcph->seqno() = seqno;                                 //当前将发送的分组号
     tcph->ts() = Scheduler::instance().clock();      //记录发送当前分组的时间戳
     int is_retransmit = (seqno < maxseq_);           //当前分组号<以发最大分组号,表示本次是重传该分组
     
     // Mark packet for diagnosis purposes if we are in Quick-Start Phase
     if (qs_approved_) {                                   //不看
      hf->qs() = 1;
     }
     
            // store timestamps, with bugfix_ts_.  From Andrei Gurtov. 
     // (A real TCP would use scoreboard for this.)
            if (bugfix_ts_ && tss==NULL) {              //不看
                    tss = (double*) calloc(tss_size_, sizeof(double));
                    if (tss==NULL) exit(1);
            }
            //dynamically grow the timestamp array if it's getting full
            if (bugfix_ts_ && window() > tss_size_* 0.9) {         //不看
                    double *ntss;
                    ntss = (double*) calloc(tss_size_*2, sizeof(double));
                    printf("resizing timestamp table/n");
                    if (ntss == NULL) exit(1);
                    for (int i=0; i<tss_size_; i++)
                            ntss[(highest_ack_ + i) % (tss_size_ * 2)] =
                                    tss[(highest_ack_ + i) % tss_size_];
                    free(tss);
                    tss_size_ *= 2;
                    tss = ntss;
            }
     
            if (tss!=NULL)                            //不看
                    tss[seqno % tss_size_] = tcph->ts();

     tcph->ts_echo() = ts_peer_;           //将对方发送的时间戳返回给对方
     tcph->reason() = reason;              //重发的原因传给对方
     tcph->last_rtt() = int(int(t_rtt_)*tcp_tick_*1000);      //将上次的RTT结果传给对方,以毫秒计,只用于统计

     if (ecn_) {                //不看
      hf->ect() = 1; // ECN-capable transport
     }
     if (cong_action_ && (!is_retransmit || SetCWRonRetransmit_)) {   //不看
      hf->cong_action() = TRUE;  
      cong_action_ = FALSE;
            }
     /* Check if this is the initial SYN packet. */
     if (seqno == 0) {              //是否支持第一个分组
      if (syn_) {                    //是第一个分组,且支持SYN
       databytes = 0;         //是SYN分组,则不参加ndatabytes的统计
       curseq_ += 1;         //应用的最大分组数+1
       hdr_cmn::access(p)->size() = tcpip_base_hdr_size_;
      }
      if (ecn_) {                   //不看
       hf->ecnecho() = 1;
    //   hf->cong_action() = 1;
       hf->ect() = 0;
      }
      if (qs_enabled_) {       //不看
       hdr_qs *qsh = hdr_qs::access(p);

       // dataout is kilobytes queued for sending
       int dataout = (curseq_ - maxseq_ - 1) * (size_ + headersize()) / 1024;
       int qs_rr = rate_request_;
       if (qs_request_mode_ == 1) {
        // PS: Avoid making unnecessary QS requests
        // use a rough estimation of RTT in qs_rtt_
        // to calculate the desired rate from dataout.
        if (dataout * 1000 / qs_rtt_ < qs_rr) {
         qs_rr = dataout * 1000 / qs_rtt_;
        }
        // qs_thresh_ is minimum number of unsent
        // segments needed to activate QS request
        if ((curseq_ - maxseq_ - 1) < qs_thresh_) {
         qs_rr = 0;
        }
       }

           if (qs_rr > 0) {
        // QuickStart code from Srikanth Sundarrajan.
        qsh->flag() = QS_REQUEST;
        qsh->ttl() = Random::integer(256);
        ttl_diff_ = (iph->ttl() - qsh->ttl()) % 256;
        qsh->rate() = hdr_qs::Bps_to_rate(qs_rr * 1024);
        qs_requested_ = 1;
           } else {
        qsh->flag() = QS_DISABLE;
       }
      }
     }
     else if (useHeaders_ == true) {               //不是第一个分组
      hdr_cmn::access(p)->size() += headersize();    //计算分组头大小
     }
            hdr_cmn::access(p)->size();

     /* if no outstanding data, be sure to set rtx timer again */
     if (highest_ack_ == maxseq_)           //最高的已确认ACK号=最大已发分组号,表示已发送的全都得到了确认,
      force_set_rtx_timer = 1;               //该数据肯定为新的未收到ACK的数据,肯定要重新设置重传定时器,原因见后面的“注”
     /* call helper function to fill in additional fields */
     output_helper(p);                          

            ++ndatapack_;                          //统计总的发送分组数
            ndatabytes_ += databytes;         //统计总发送字节数
     send(p, 0);                                   //发送该分组
     if (seqno == curseq_ && seqno > maxseq_)      //发送序号=最大允许发送序号,表示已发完
      idle();  // 告诉应用程序已经发完数据         Tell application I have sent everything so far
     if (seqno > maxseq_) {           //发送序号>上次最大发送序号,表示是新发送分组
      maxseq_ = seqno;             //新发送分组,记录最大发送序号
      if (!rtt_active_) {                //如果上一个RTT样本刚刚收到,rtt_active=1表示正在等待RTT接收样本ACK返回
       rtt_active_ = 1;              //表示本分组是新的RTT样本,rtt开始新的计算
       if (seqno > rtt_seq_) {    //若发送序号>上次RTT样本号
        rtt_seq_ = seqno;       //则本序号是新的RTT样本
        rtt_ts_ = Scheduler::instance().clock();    //且记录该样本的发送时间戳
       }
         
      }
     } else {     //不是新分组了,则是重传
             ++nrexmitpack_;     //统计重传分组数
      nrexmitbytes_ += databytes;   //统计重传字节数
     }
     if (!(rtx_timer_.status() == TIMER_PENDING) || force_set_rtx_timer) 
                       /*TIMER_PENDING表示超时重传定时器在等待状态,即对定时器定时的分组号尚未收到ACK,
                      若该分组的ACK刚刚收到,或在强制重传定时器的情况时,对重传定时器重新设定超时 */
      /* No timer pending.  Schedule one. */
      set_rtx_timer();
    }
    /* 
             注:重传定时的原理:只设定一个重传定时器,对每一个发送的分组号,设为A,
    设为检查定时器是否已经在用,若没有用,则设定该定时器,此时该定时器对应该分组号;
    若在用,则不修改,继续传该分组。
            当收到对方对分组A的确认ACK,则将重新设定定时器,到下一个分组号A+1,此时定时器对应A+1分组;
    以后,每收到一个新确认,都将定时器对应到该分组号+1。即每次都对第一个未被确认的分组进行监控,
     保证此分组一旦得不到确认就超时。           
      */

     

    /*
     * Must convert bytes into packets for one-way TCPs.
     * If nbytes == -1, this corresponds to infinite send.  We approximate
     * infinite by a very large number (TCP_MAXSEQ).
     */
     //该程序由上层应用调用,用来产生TCP流,完成tcp连接、传输、结束全过程,而不用管数据具体怎么传输
    void TcpAgent::sendmsg(int nbytes, const char* /*flags*/)      //若nbyte=-1,表示发送允许的无限多数据
    {
     if (nbytes == -1 && curseq_ <= TCP_MAXSEQ)             //若无限发送,则确定发送的最大数据量
      curseq_ = TCP_MAXSEQ; 
     else
      curseq_ += (nbytes/size_ + (nbytes%size_ ? 1 : 0));  //有限发送,则按字节数计算将发送的总的序列数
     send_much(0, 0, maxburst_);              //尽量发送多的数据,直到发送完或连接终止,maxburst_是最大允许发送的数值,默认值0,表示不限数量
    }

    void TcpAgent::advanceby(int delta)
    {
      curseq_ += delta;
     if (delta > 0)
      closed_ = 0;
     send_much(0, 0, maxburst_); 
    }


    int TcpAgent::command(int argc, const char*const* argv)
    {
     if (argc == 3) {
      if (strcmp(argv[1], "advance") == 0) {
       int newseq = atoi(argv[2]);
       if (newseq > maxseq_)
        advanceby(newseq - curseq_);
       else
        advanceby(maxseq_ - curseq_);
       return (TCL_OK);
      }
      if (strcmp(argv[1], "advanceby") == 0) {
       advanceby(atoi(argv[2]));
       return (TCL_OK);
      }
      if (strcmp(argv[1], "eventtrace") == 0) {
       et_ = (EventTrace *)TclObject::lookup(argv[2]);
       return (TCL_OK);
      }
      /*
       * Curtis Villamizar's trick to transfer tcp connection
       * parameters to emulate http persistent connections.
       *
       * Another way to do the same thing is to open one tcp
       * object and use start/stop/maxpkts_ or advanceby to control
       * how much data is sent in each burst.
       * With a single connection, slow_start_restart_
       * should be configured as desired.
       *
       * This implementation (persist) may not correctly
       * emulate pure-BSD-based systems which close cwnd
       * after the connection goes idle (slow-start
       * restart).  See appendix C in
       * Jacobson and Karels ``Congestion
       * Avoidance and Control'' at
       * <ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z>
       * (*not* the original
       * '88 paper) for why BSD does this.  See
       * ``Performance Interactions Between P-HTTP and TCP
       * Implementations'' in CCR 27(2) for descriptions of
       * what other systems do the same.
       *
       */
      if (strcmp(argv[1], "persist") == 0) {
       TcpAgent *other
         = (TcpAgent*)TclObject::lookup(argv[2]);
       cwnd_ = other->cwnd_;
       awnd_ = other->awnd_;
       ssthresh_ = other->ssthresh_;
       t_rtt_ = other->t_rtt_;
       t_srtt_ = other->t_srtt_;
       t_rttvar_ = other->t_rttvar_;
       t_backoff_ = other->t_backoff_;
       return (TCL_OK);
      }
     }
     return (Agent::command(argc, argv));
    }

    /*
     * Returns the window size adjusted to allow <num> segments past recovery
     * point to be transmitted on next ack.
     */
    int TcpAgent::force_wnd(int num)
    {
     return recover_ + num - (int)highest_ack_;
    }


    //整数型的发送窗口,发送窗口=min(wnd_,cwnd_)
    int TcpAgent::window()
    {
            /*
             * If F-RTO is enabled and first ack has come in, temporarily open
             * window for sending two segments.
      * The F-RTO code is from Pasi Sarolahti.  F-RTO is an algorithm
      * for detecting spurious retransmission timeouts.
             */
            if (frto_ == 2) {
                    return (force_wnd(2) < wnd_ ?
                            force_wnd(2) : (int)wnd_);
            } else {
      return (cwnd_ < wnd_ ? (int)cwnd_ : (int)wnd_);
            }
    }


    //双精度的发送窗口,发送窗口=min(wnd_,cwnd_)
    double TcpAgent::windowd()
    {
     return (cwnd_ < wnd_ ? (double)cwnd_ : (double)wnd_);
    }


    /*被recv(),timeout(),timeout_nonrtx(),sendmsg()等调用
     * Try to send as much data as the window will allow.  The link layer will 
     * do the buffering; we ask the application layer for the size of the packets.
     */
    void TcpAgent::send_much(int force, int reason, int maxburst)   
     //在窗口范围内把尽量多的数据发出去,完成连接、传输、结束全过程
    {
     send_idle_helper();
     int win = window();                   //整型的发送窗口
     int npackets = 0;                     // 本次发送分组数

     if (!force && delsnd_timer_.status() == TIMER_PENDING) //通常force=0,在处理非重传的超时时为1
      /*非重传超时,即延迟随机时间发送数据,用于模拟网络的延迟,由timeout_nonrtx()调用,再被DelSndTimer::expire()调用
              这里表示如果不是非重传超时,但延迟定时器还在工作,就不发送,直接退出  */
      return;
     /* Save time when first packet was sent, for newreno  --Allman */
     if (t_seqno_ == 0)
      firstsent_ = Scheduler::instance().clock();   //记录第一个分组发送时间,newreno用
      
     if (burstsnd_timer_.status() == TIMER_PENDING)       //?
      return;
     while (t_seqno_ <= highest_ack_ + win && t_seqno_ < curseq_) {     
            //分组号在发送窗口内,且小于最大分组号,即满足条件就尽量发送,不满足条件才退出
      if (overhead_ == 0 || force || qs_approved_) {  
              //overhead是固定值,默认0;force=1,即非重传超时;qs,即快启动
              //只要是正常情况,或非重传超时,或快启动,就按下面运行
       output(t_seqno_, reason);    //发送该分组,原因发到对端
       npackets++;       //已发送分组数记录
       if (QOption_)
        process_qoption_after_send () ; 
       t_seqno_ ++ ;     //将要发送分组号+1
       if (qs_approved_ == 1) {
        // delay = effective RTT / window
        double delay = (double) t_rtt_ * tcp_tick_ / win;
        if (overhead_) { 
         delsnd_timer_.resched(delay + Random::uniform(overhead_));
        } else {
         delsnd_timer_.resched(delay);
        }
        return;
       }
      } else if (!(delsnd_timer_.status() == TIMER_PENDING)) {   
       //不是上面的三种情况,但延迟定时器没有等待了,就重新设置随机延迟时间,并返回
       /*
        * Set a delayed send timeout.
        */
       delsnd_timer_.resched(Random::uniform(overhead_));
       return;
      }
      win = window();    //发送了一个分组,发送窗口重新计算
      if (maxburst && npackets == maxburst)   //maxburst是一次最多发送的分组数,默认为0,表示不限制数量
       break;
     }
     /* call helper function */
     send_helper(maxburst);
    }

     

    /*主要在timeout()、dupack_action()中使用
     * We got a timeout or too many duplicate acks.  Clear the retransmit timer.  
     * Resume the sequence one past the last packet acked.  
     * "mild" is 0 for timeouts and Tahoe dup acks, 1 for Reno dup acks.
     * "backoff" is 1 if the timer should be backed off, 0 otherwise.
     */
    void TcpAgent::reset_rtx_timer(int mild, int backoff)
    {
     if (backoff)           //重传时,backoff=1,见timeout(),表示要对RTO做出调整,RTO=RTO*2
      rtt_backoff();
     set_rtx_timer();       //根据调整
     if (!mild)               //程序只用到了mild=0的情况,RENO用到mild=1的情况
      t_seqno_ = highest_ack_ + 1;
     rtt_active_ = 0;
    }

     

    /*
     * Set retransmit timer using current rtt estimate.  By calling resched(), 
     * it does not matter whether the timer was already running.
     */
    void TcpAgent::set_rtx_timer()
    {
     rtx_timer_.resched(rtt_timeout());
    }

     

    /*只被newack()调用,用来设置重传定时器,pkt是接收到的ACK分组
     * Set new retransmission timer if not all outstanding
     * or available data acked, or if we are unable to send because 
     * cwnd is less than one (as when the ECN bit is set when cwnd was 1).
     * Otherwise, if a timer is still outstanding, cancel it.
     */
    void TcpAgent::newtimer(Packet* pkt)
    {
     hdr_tcp *tcph = hdr_tcp::access(pkt);
     /*
      * t_seqno_, the next packet to send, is reset (decreased) 
      *   to highest_ack_ + 1 after a timeout,
      *   so we also have to check maxseq_, the highest seqno sent.
      * In addition, if the packet sent after the timeout has
      *   the ECN bit set, then the returning ACK caused cwnd_ to
      *   be decreased to less than one, and we can't send another
      *   packet until the retransmit timer again expires.
      *   So we have to check for "cwnd_ < 1" as well.
      */
      //当前将发送序号>本次接收ack号
     if (t_seqno_ > tcph->seqno() || tcph->seqno() < maxseq_ || cwnd_ < 1) 
      set_rtx_timer();
     else
      cancel_rtx_timer();       //程序中没有该子程序
    }

     

    /*
     * for experimental, high-speed TCP
     */
    double TcpAgent::linear(double x, double x_1, double y_1, double x_2, double y_2)
    {
     // The y coordinate factor ranges from y_1 to y_2
     //  as the x coordinate ranges from x_1 to x_2.
     double y = y_1 + ((y_2 - y_1) * ((x - x_1)/(x_2-x_1)));
     return y;
    }

     

    /*
     * Limited Slow-Start for large congestion windows.
     * This is only used when max_ssthresh_ is non-zero.
     */
    double TcpAgent::limited_slow_start(double cwnd, double max_ssthresh, double increment)
    {
     int round = int(cwnd / (double(max_ssthresh)/2.0));
     double increment1 = 1.0/(double(round)); 
     if (increment < increment1)
      increment = increment1;
     return increment;
    }

     

    /*
     * For retrieving numdupacks_.
     */
    int TcpAgent::numdupacks(double cwnd)
    {
            int cwndfraction = (int) cwnd/numdupacksFrac_;
     if (numdupacks_ > cwndfraction) {
        return numdupacks_;
            } else {
        return cwndfraction;
     }
    }

     

    /*
     * Calculating the decrease parameter for highspeed TCP.
     */
    double TcpAgent::decrease_param()
    {
     double decrease;
     // OLD:
     // decrease = linear(log(cwnd_), log(low_window_), 0.5, log(high_window_), high_decrease_);
     // NEW (but equivalent):
            decrease = hstcp_.dec1 + log(cwnd_) * hstcp_.dec2;  
     return decrease;
    }

     

    /*
     * Calculating the increase parameter for highspeed TCP.
     */
    double TcpAgent::increase_param()
    {
     double increase, decrease, p, answer;
     /* extending the slow-start for high-speed TCP */

     /* for highspeed TCP -- from Sylvia Ratnasamy, */
     /* modifications by Sally Floyd and Evandro de Souza */
      // p ranges from 1.5/W^2 at congestion window low_window_, to
     //    high_p_ at congestion window high_window_, on a log-log scale.
            // The decrease factor ranges from 0.5 to high_decrease
     //  as the window ranges from low_window to high_window, 
     //  as the log of the window. 
     // For an efficient implementation, this would just be looked up
     //   in a table, with the increase and decrease being a function of the
     //   congestion window.

           if (cwnd_ <= low_window_) { 
      answer = 1 / cwnd_;
             return answer; 
           } else if (cwnd_ >= hstcp_.cwnd_last_ && 
           cwnd_ < hstcp_.cwnd_last_ + cwnd_range_) {
           // cwnd_range_ can be set to 0 to be disabled,
           //  or can be set from 1 to 100 
             answer = hstcp_.increase_last_ / cwnd_;
                   return answer;
           } else { 
      // OLD:
       // p = exp(linear(log(cwnd_), log(low_window_), log(hstcp_.low_p), log(high_window_), log(high_p_)));
      // NEW, but equivalent:
             p = exp(hstcp_.p1 + log(cwnd_) * hstcp_.p2);  
             decrease = decrease_param();
      // OLD:
      // increase = cwnd_*cwnd_*p *(2.0*decrease)/(2.0 - decrease); 
      // NEW, but equivalent:
      increase = cwnd_ * cwnd_ * p /(1/decrease - 0.5);
      // if (increase > max_increase) { 
      //  increase = max_increase;
      // } 
      answer = increase / cwnd_;
      hstcp_.cwnd_last_ = cwnd_;
      hstcp_.increase_last_ = increase;
             return answer;
     }       
    }

    /*仅被recv_newack_helper()调用,再被recv调用,在收到新ACK后,用于慢启动和拥塞避免,调整CWND,不调整SSTHRESH
     * open up the congestion window
     */
    void TcpAgent::opencwnd()
    {
     double increment;
     if (cwnd_ < ssthresh_) {     //慢启动情况,CWND=CWND+1,数据指数增加
      /* slow-start (exponential) */
      cwnd_ += 1;
     } else {      //cwnd_>=ssthresh_情况,CWND=CWND+1/CWND,数据线性增加
      /* linear */
      double f;
      switch (wnd_option_) {      //wnd_option_是窗口策略,系统固定设置,默认为1
      case 0:
       if (++count_ >= cwnd_) {
        count_ = 0;
        ++cwnd_;
       }
       break;

      case 1:                               //默认情况,其他的情况不用看
       /* This is the standard algorithm. */
       increment = increase_num_ / cwnd_; //increase_num_:加法增策略因子,默认1.0
                             //算出增加量1/CWND
       if ((last_cwnd_action_ == 0 ||         //last_cwnd_action_初始化为0
         last_cwnd_action_ == CWND_ACTION_TIMEOUT) 
         && max_ssthresh_ > 0) {
        increment = limited_slow_start(cwnd_,
          max_ssthresh_, increment);
       }
       cwnd_ += increment;
       break;

      case 2:
       /* These are window increase algorithms
        * for experimental purposes only. */
       /* This is the Constant-Rate increase algorithm 
                             *  from the 1991 paper by S. Floyd on "Connections  
        *  with Multiple Congested Gateways". 
        *  The window is increased by roughly 
        *  wnd_const_*RTT^2 packets per round-trip time.  */
       f = (t_srtt_ >> T_SRTT_BITS) * tcp_tick_;
       f *= f;
       f *= wnd_const_;
       /* f = wnd_const_ * RTT^2 */
       f += fcnt_;
       if (f > cwnd_) {
        fcnt_ = 0;
        ++cwnd_;
       } else
        fcnt_ = f;
       break;

      case 3:
       /* The window is increased by roughly 
        *  awnd_^2 * wnd_const_ packets per RTT,
        *  for awnd_ the average congestion window. */
       f = awnd_;
       f *= f;
       f *= wnd_const_;
       f += fcnt_;
       if (f > cwnd_) {
        fcnt_ = 0;
        ++cwnd_;
       } else
        fcnt_ = f;
       break;

                    case 4:
       /* The window is increased by roughly 
        *  awnd_ * wnd_const_ packets per RTT,
        *  for awnd_ the average congestion window. */
                            f = awnd_;
                            f *= wnd_const_;
                            f += fcnt_;
                            if (f > cwnd_) {
                                    fcnt_ = 0;
                                    ++cwnd_;
                            } else
                                    fcnt_ = f;
                            break;
      case 5:
       /* The window is increased by roughly wnd_const_*RTT 
        *  packets per round-trip time, as discussed in
        *  the 1992 paper by S. Floyd on "On Traffic 
        *  Phase Effects in Packet-Switched Gateways". */
                            f = (t_srtt_ >> T_SRTT_BITS) * tcp_tick_;
                            f *= wnd_const_;
                            f += fcnt_;
                            if (f > cwnd_) {
                                    fcnt_ = 0;
                                    ++cwnd_;
                            } else
                                    fcnt_ = f;
                            break;
                    case 6:
                            /* binomial controls */ 
                            cwnd_ += increase_num_ / (cwnd_*pow(cwnd_,k_parameter_));                
                            break; 
       case 8: 
       /* high-speed TCP, RFC 3649 */
       increment = increase_param();
       if ((last_cwnd_action_ == 0 ||
         last_cwnd_action_ == CWND_ACTION_TIMEOUT) 
         && max_ssthresh_ > 0) {
        increment = limited_slow_start(cwnd_,
          max_ssthresh_, increment);
       }
       cwnd_ += increment;
                            break;
      default:
    #ifdef notdef
       /*XXX*/
       error("illegal window option %d", wnd_option_);
    #endif
       abort();
      }
     }
     // if maxcwnd_ is set (nonzero), make it the cwnd limit
     if (maxcwnd_ && (int(cwnd_) > maxcwnd_))    //限制CWND,不能超过最大值,最大值默认为0,表示不限制
      cwnd_ = maxcwnd_;

     return;
    }


    //被timeout、dupack_action等调用,用来降低拥塞窗口CWND和门限SSTHRESH
    void
    TcpAgent::slowdown(int how)
    {
     double decrease;  /* added for highspeed - sylvia */
     double win, halfwin, decreasewin;
     int slowstart = 0;    //慢启动参数,=1表示是慢启动
     ++ncwndcuts_;        //统计CWND被减少的次数,不管任何原因
     if (!(how & TCP_IDLE) && !(how & NO_OUTSTANDING_DATA)){
      ++ncwndcuts1_;  //统计因拥塞CWND被减少的次数
     }
     // we are in slowstart for sure if cwnd < ssthresh
     if (cwnd_ < ssthresh_)      //判断是否在慢启动状态
      slowstart = 1;

           //下面一段分别按双精度和整型计算出发送窗口WND
            if (precision_reduce_) {           //是否按双精度计算发送窗口win,而不是整数减,默认为FALSE
      halfwin = windowd() / 2;
                    if (wnd_option_ == 6) {        //wnd_option_值见opencwnd(),默认=1, =6或8不用看
                            /* binomial controls */
                            decreasewin = windowd() - (1.0-decrease_num_)*pow(windowd(),l_parameter_);
                    } else if (wnd_option_ == 8 && (cwnd_ > low_window_)) { 
                            /* experimental highspeed TCP */
       decrease = decrease_param();
       //if (decrease < 0.1) 
       // decrease = 0.1;
       decrease_num_ = decrease;
                            decreasewin = windowd() - (decrease * windowd());
                    } else {                 //wnd_option_=1到5的情况,=1是默认情况,见opencwnd()
        decreasewin = decrease_num_ * windowd(); //decreasewin为窗口减少量
      }
      win = windowd();     //双精度发送窗口
     } else  {            //默认情况,按整数计算发送窗口win,算法同上面一样
      int temp;
      temp = (int)(window() / 2);
      halfwin = (double) temp;
                    if (wnd_option_ == 6) {
                            /* binomial controls */
                            temp = (int)(window() - (1.0-decrease_num_)*pow(window(),l_parameter_));
                    } else if ((wnd_option_ == 8) && (cwnd_ > low_window_)) { 
                            /* experimental highspeed TCP */
       decrease = decrease_param();
       //if (decrease < 0.1)
                            //       decrease = 0.1;  
       decrease_num_ = decrease;
                            temp = (int)(windowd() - (decrease * windowd()));
                    } else {
        temp = (int)(decrease_num_ * window());
      }
      decreasewin = (double) temp;
      win = (double) window();    //整型发送窗口
     }
     
    //以下按照HOW的值,针对各种情况,减少CWND和SSTHRESH 
     if (how & CLOSE_SSTHRESH_HALF)
      // For the first decrease, decrease by half
      // even for non-standard values of decrease_num_.
      if (first_decrease_ == 1 || slowstart ||              //在第一次减少,慢启动状态或超时重传时(为何第一次减少时一定要SSTHRESH减半?)
       last_cwnd_action_ == CWND_ACTION_TIMEOUT) {   //SSTHRESH降低到一半,wnd_option_=默认1时,下面两种算法应该一样
                                              //正常应该CWND=decreasewin
       // Do we really want halfwin instead of decreasewin
      // after a timeout?
       ssthresh_ = (int) halfwin;
      } else {
       ssthresh_ = (int) decreasewin;                //即:SSTHRESH=CWND
      }
            else if (how & THREE_QUARTER_SSTHRESH)        //SSTHRESH减少到3/4窗口
      if (ssthresh_ < 3*cwnd_/4)
       ssthresh_  = (int)(3*cwnd_/4);
     if (how & CLOSE_CWND_HALF)                     //CWND减少一半
      // For the first decrease, decrease by half
      // even for non-standard values of decrease_num_.
      if (first_decrease_ == 1 || slowstart || decrease_num_ == 0.5) {
       cwnd_ = halfwin;
      } else cwnd_ = decreasewin;   //如果设decreasewin为其他值,则是用于测试
            else if (how & CWND_HALF_WITH_MIN) {           //QOPTION,不看
      // We have not thought about how non-standard TCPs, with
      // non-standard values of decrease_num_, should respond
      // after quiescent periods.
                    cwnd_ = decreasewin;
                    if (cwnd_ < 1)
                            cwnd_ = 1;
     }
     else if (how & CLOSE_CWND_RESTART)         //超时时使SSTHRESH减半,CWND=1
      cwnd_ = int(wnd_restart_);         //wnd_restart_初始化为1
     else if (how & CLOSE_CWND_INIT)         //快速启动丢失时使用,不看
      cwnd_ = int(wnd_init_);
     else if (how & CLOSE_CWND_ONE)       //无显著数据,重复ACK,及F-RTO时使 CWND=1
      cwnd_ = 1;
     else if (how & CLOSE_CWND_HALF_WAY) {  //QOPTION时使用,不看
      // cwnd_ = win - (win - W_used)/2 ;
      cwnd_ = W_used + decrease_num_ * (win - W_used);
                    if (cwnd_ < 1)
                            cwnd_ = 1;
     }
     if (ssthresh_ < 2)                 //SSTHRESH不能小于2
      ssthresh_ = 2;           
     if (how & (CLOSE_CWND_HALF|CLOSE_CWND_RESTART|CLOSE_CWND_INIT|CLOSE_CWND_ONE))
      cong_action_ = TRUE;        //根据HOW判断当前是否拥塞

     fcnt_ = count_ = 0;                //用于wnd_option_=2,3,4,5的情况,不看
     if (first_decrease_ == 1)          //本次是第一次减少,下次就不是了:每次连接只有一次减少
      first_decrease_ = 0;
     // for event tracing slow start
     if (cwnd_ == 1 || slowstart)        //跟踪慢启动
      // Not sure if this is best way to capture slow_start
      // This is probably tracing a superset of slowdowns of
      // which all may not be slow_start's --Padma, 07/'01.
      trace_event("SLOW_START");
     


     
    }

    /*被recv_newack_helper()调用,recv_newack_helper再被recv()调用,pkt为接收ACK分组
     * Process a packet that acks previously unacknowleged data.
     */
    void TcpAgent::newack(Packet* pkt)
    {
     double now = Scheduler::instance().clock();
     hdr_tcp *tcph = hdr_tcp::access(pkt);
     /* 
      * Wouldn't it be better to set the timer *after*
      * updating the RTT, instead of *before*? 
      */
     if (!timerfix_) newtimer(pkt);      //采用在更新RTT以前更新RTO定时器的策略
     dupacks_ = 0;                  //新ACK,将重复ACK的统计恢复为0
     last_ack_ = tcph->seqno();    // 记录本次新ACK号到last_ack_
     prev_highest_ack_ = highest_ack_ ; 
     highest_ack_ = last_ack_;     //记录本次新ACK号到last_ack_

     if (t_seqno_ < last_ack_ + 1)     // 更新下一次要发送的包的记录
      t_seqno_ = last_ack_ + 1;      
     /* 
      * Update RTT only if it's OK to do so from info in the flags header.
      * This is needed for protocols in which intermediate agents
      * in the network intersperse acks (e.g., ack-reconstructors) for
      * various reasons (without violating e2e semantics).
      */ 
     hdr_flags *fh = hdr_flags::access(pkt);      
           //以下是有时间戳的RTT处理情况           
     if (!fh->no_ts_) {                                        //该ACK有时间戳
      if (ts_option_) {                                 //本连接可以采用时间戳
       ts_echo_=tcph->ts_echo();                 //记录该新ACK的回应时间,相当于rtt_ts_
       rtt_update(now - tcph->ts_echo());        //更新RTT值,now-回应时间即为rtt时间
       if (ts_resetRTO_ && (!ect_ || !ecn_backoff_ ||
           !hdr_flags::access(pkt)->ecnecho())) { 
        // From Andrei Gurtov
        /* 
         * Don't end backoff if still in ECN-Echo with
          * a congestion window of 1 packet. 
         */
        t_backoff_ = 1;
        ecn_backoff_ = 0;
       }
      }
      if (rtt_active_ && tcph->seqno() >= rtt_seq_) {
       if (!ect_ || !ecn_backoff_ || 
        !hdr_flags::access(pkt)->ecnecho()) {
        /* 
         * Don't end backoff if still in ECN-Echo with
          * a congestion window of 1 packet. 
         */
        t_backoff_ = 1;
        ecn_backoff_ = 0;
       }
       rtt_active_ = 0;
       if (!ts_option_)                          //本连接不能采用时间戳
        rtt_update(now - rtt_ts_);
      }
     }
                  
     if (timerfix_) newtimer(pkt);            //采用在更新RTT以前更新RTO定时器的策略,更科学
     /* update average window */       //更新平均窗口awnd_=(1 - wnd_th_)*awnd+wnd_th_*cwnd
     awnd_ *= 1.0 - wnd_th_;
     awnd_ += wnd_th_ * cwnd_;
    }


    /*
     * Respond either to a source quench or to a congestion indication bit.
     * This is done at most once a roundtrip time;  after a source quench,
     * another one will not be done until the last packet transmitted before
     * the previous source quench has been ACKed.
     *
     * Note that this procedure is called before "highest_ack_" is
     * updated to reflect the current ACK packet.  
     */
    void TcpAgent::ecn(int seqno)
    {
     if (seqno > recover_ || 
           last_cwnd_action_ == CWND_ACTION_TIMEOUT) {
      recover_ =  maxseq_;
      last_cwnd_action_ = CWND_ACTION_ECN;
      if (cwnd_ <= 1.0) {
       if (ecn_backoff_) 
        rtt_backoff();
       else ecn_backoff_ = 1;
      } else ecn_backoff_ = 0;
      slowdown(CLOSE_CWND_HALF|CLOSE_SSTHRESH_HALF);
      ++necnresponses_ ;
      // added by sylvia to count number of ecn responses 
     }
    }

    /*
     *  Is the connection limited by the network (instead of by a lack
     *    of data from the application?
     */
    int TcpAgent::network_limited() {
     int win = window () ;
     if (t_seqno_ > (prev_highest_ack_ + win))
      return 1;
     else
      return 0;
    }

    //由recv()调用,收到新ACK的情况,用于新ack处理(newack(pkt)),及cwnd设置,关闭连接等处理
    void TcpAgent::recv_newack_helper(Packet *pkt) {
     //hdr_tcp *tcph = hdr_tcp::access(pkt);
     newack(pkt);                                                  //新ACK处理
            if (qs_window_ && highest_ack_ >= qs_window_) {                     //QS处理,不用看
                    // All segments in the QS window have been acknowledged.
                    // We can exit the Quick-Start phase.
                    qs_window_ = 0;
            }
     if (!ect_ || !hdr_flags::access(pkt)->ecnecho() ||        //不是ECN分组,或"old ecn"。正常的新分组
      (old_ecn_ && ecn_burst_)) {
      /* If "old_ecn", this is not the first ACK carrying ECN-Echo
       * after a period of ACKs without ECN-Echo.
       * Therefore, open the congestion window. */
      /* if control option is set, and the sender is not
        window limited, then do not increase the window size 
       control_increase_设为1,则发方窗口不受限,不用增加窗口大小?
        */
      
      if (!control_increase_ ||                 //control_increase_系统固定值,默认为0
         (control_increase_ && (network_limited() == 1))) 
             opencwnd();            //正常情况,收到新ACK,就打开CWND设置
     }
     if (ect_) {                                              //是ECN分组
      if (!hdr_flags::access(pkt)->ecnecho())
       ecn_backoff_ = 0;
      if (!ecn_burst_ && hdr_flags::access(pkt)->ecnecho())
       ecn_burst_ = TRUE;
      else if (ecn_burst_ && ! hdr_flags::access(pkt)->ecnecho())
       ecn_burst_ = FALSE;
     }
     if (!ect_ && hdr_flags::access(pkt)->ecnecho() &&
      !hdr_flags::access(pkt)->cong_action())
      ect_ = 1;
     /* if the connection is done, call finish() */
     if ((highest_ack_ >= curseq_-1) && !closed_) {      //最大ACK>=应用程序最大值-1,表示连接结束
      closed_ = 1;          //关闭连接,运行finish();                      
      finish();
     }
     if (QOption_ && curseq_ == highest_ack_ +1) {     //不看
      cancel_rtx_timer();
     }
     if (frto_ == 1) {                              
      /*
       * New ack after RTO. If F-RTO is enabled, try to transmit new
       * previously unsent segments.
       * If there are no new data or receiver window limits the
       * transmission, revert to traditional recovery.
       */
      if (recover_ + 1 >= highest_ack_ + wnd_ ||
          recover_ + 1 >= curseq_) {
       frto_ = 0;
       } else if (highest_ack_ == recover_) {
        /*
         * F-RTO step 2a) RTO retransmission fixes whole
        * window => cancel F-RTO
         */
        frto_ = 0;
      } else {
       t_seqno_ = recover_ + 1;
       frto_ = 2;
      }
     } else if (frto_ == 2) {
      /*
       * Second new ack after RTO. If F-RTO is enabled, RTO can be
       * declared spurious
       */
      spurious_timeout();
     }
    }

    /*
     * Set the initial window. 
     */
    double
    TcpAgent::initial_window()
    {
            // If Quick-Start Request was approved, use that as a basis for
            // initial window
            if (qs_cwnd_) {
                    return (qs_cwnd_);
            }
     //
     // init_option = 1: static iw of wnd_init_
     //
     if (wnd_init_option_ == 1) {    //使用默认初始启动窗口
      return (wnd_init_);
     }
            else if (wnd_init_option_ == 2) {  //使用大的初始启动窗口
      // do iw according to Internet draft
       if (size_ <= 1095) {        //根据分组数据大小分段
       return (4.0);
       } else if (size_ < 2190) {
       return (3.0);
      } else {
       return (2.0);
      }
     }
     // XXX what should we return here???
     fprintf(stderr, "Wrong number of wnd_init_option_ %d/n", 
      wnd_init_option_);
     abort();
     return (2.0); // XXX make msvc happy.
    }

    /*
     * Dupack-action: what to do on a DUP ACK.  After the initial check
     * of 'recover' below, this function implements the following truth
     * table:
     *
     * bugfix ecn last-cwnd == ecn action
     *
     * 0 0 0   tahoe_action
     * 0 0 1   tahoe_action [impossible]
     * 0 1 0   tahoe_action
     * 0 1 1   slow-start, return
     * 1 0 0   nothing
     * 1 0 1   nothing  [impossible]
     * 1 1 0   nothing
     * 1 1 1   slow-start, return
     */

    /* 
     * A first or second duplicate acknowledgement has arrived, and
     * singledup_ is enabled.
     * If the receiver's advertised window permits, and we are exceeding our
     * congestion window by less than numdupacks_, then send a new packet.
     */
    //发送单个分组,可以是重传分组
    void
    TcpAgent::send_one()
    {
     if (t_seqno_ <= highest_ack_ + wnd_ && t_seqno_ < curseq_ &&
      t_seqno_ <= highest_ack_ + cwnd_ + dupacks_ ) {
      output(t_seqno_, 0);  //
      if (QOption_)
       process_qoption_after_send () ;
      t_seqno_ ++ ;
      // send_helper(); ??
     }
     return;
    }


    //在recv()中,满足了快速重传的条件后调用,用于减少CWND和SSTHRESH,并重启重传定时器
    void
    TcpAgent::dupack_action()    
    {
     int recovered = (highest_ack_ > recover_);  
                 //recover_用于记录超时和快速重传前已发送分组的最大序号,用于F-RTO
     if (recovered || (!bug_fix_ && !ecn_)) {
      goto tahoe_action;                      //跳到tahoe_action
     }

     if (ecn_ && last_cwnd_action_ == CWND_ACTION_ECN) {        //不看
      last_cwnd_action_ = CWND_ACTION_DUPACK;
      slowdown(CLOSE_CWND_ONE);
      reset_rtx_timer(0,0);
      return;
     }

     if (bug_fix_) {
      /*
       * The line below, for "bug_fix_" true, avoids
       * problems with multiple fast retransmits in one
       * window of data. 
       */
      return;
     }

    tahoe_action:                                     //tcp tahoe
            recover_ = maxseq_;                  //记录超时和快速重传前已发送分组的最大序号
            if (!lossQuickStart()) {                //
      // we are now going to fast-retransmit and willtrace that event
      trace_event("FAST_RETX");         //跟踪快速重传
      last_cwnd_action_ = CWND_ACTION_DUPACK;    //记录本次快速重传
      slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_ONE);    //SSTHRESH减半,CWND=1
     }
     reset_rtx_timer(0,0);              //重设重传定时器
     return;
    }

    /*
     * When exiting QuickStart, reduce the congestion window to the
     *   size that was actually used.
     */
    void TcpAgent::endQuickStart()
    {
     qs_approved_ = 0;
            qs_cwnd_ = 0;
            qs_window_ = maxseq_;
     int new_cwnd = maxseq_ - last_ack_;
     if (new_cwnd > 1 && new_cwnd < cwnd_) {
       cwnd_ = new_cwnd;
      if (cwnd_ < initial_window()) 
       cwnd_ = initial_window();
     }
    }

    void TcpAgent::processQuickStart(Packet *pkt)
    {
     // QuickStart code from Srikanth Sundarrajan.
     hdr_tcp *tcph = hdr_tcp::access(pkt);
     hdr_qs *qsh = hdr_qs::access(pkt);
     double now = Scheduler::instance().clock();
     int app_rate;

            // printf("flag: %d ttl: %d ttl_diff: %d rate: %d/n", qsh->flag(),
     //     qsh->ttl(), ttl_diff_, qsh->rate());
     qs_requested_ = 0;
     qs_approved_ = 0;
     if (qsh->flag() == QS_RESPONSE && qsh->ttl() == ttl_diff_ && 
                qsh->rate() > 0) {
                    app_rate = (int) (hdr_qs::rate_to_Bps(qsh->rate()) *
                          (now - tcph->ts_echo()) / (size_ + headersize()));
    #ifdef QS_DEBUG
      printf("Quick Start approved, rate %d, window %d/n", 
             qsh->rate(), app_rate);
    #endif
                    if (app_rate > initial_window()) {
       qs_cwnd_ = app_rate;
                            qs_approved_ = 1;
                    }
            } else { // Quick Start rejected
    #ifdef QS_DEBUG
                    printf("Quick Start rejected/n");
    #endif
            }

    }

     

    /*
     * ACK has been received, hook from recv()
     */
    void TcpAgent::recv_frto_helper(Packet *pkt)
    {
     hdr_tcp *tcph = hdr_tcp::access(pkt);
     if (tcph->seqno() == last_ack_ && frto_ != 0) {
      /*
       * Duplicate ACK while in F-RTO indicates that the
       * timeout was valid. Go to slow start retransmissions.
       */
      t_seqno_ = highest_ack_ + 1;
      cwnd_ = frto_;
      frto_ = 0;

      // Must zero dupacks (in order to trigger send_much at recv)
      // dupacks is increased in recv after exiting this function
      dupacks_ = -1;
     }
    }


    /*
     * A spurious timeout has been detected. Do appropriate actions.
     */
    void TcpAgent::spurious_timeout()
    {
     frto_ = 0;

     switch (spurious_response_) {
     case 1:
     default:
      /*
       * Full revert of congestion window
       * (FlightSize before last acknowledgment)
       */
      cwnd_ = t_seqno_ - prev_highest_ack_;
      break;
     
     case 2:
      /*
       * cwnd = reduced ssthresh (approx. half of the earlier pipe)
       */
      cwnd_ = ssthresh_; break;
     case 3:
      /*
       * slow start, but without retransmissions
       */
      cwnd_ = 1; break;
     }

     /*
      * Revert ssthresh to size before retransmission timeout
      */
     ssthresh_ = pipe_prev_;

     /* If timeout was spurious, bugfix is not needed */
     recover_ = highest_ack_ - 1;
    }


    /*
     * Loss occurred in Quick-Start window.
     * If Quick-Start is enabled, packet loss in the QS phase should
     * trigger slow start instead of the regular fast retransmit,
     * see [draft-amit-quick-start-03.txt] (to appear).
     * We use variable tcp_qs_recovery_ to toggle this behaviour on and off.
     * If tcp_qs_recovery_ is true, initiate slow start to probe for
     * a correct window size.
     *
     * Return value: non-zero if Quick-Start specific loss recovery took place
     */
    int TcpAgent::lossQuickStart()
    {
           if (qs_window_ && tcp_qs_recovery_) {
                    //recover_ = maxseq_;
                    //reset_rtx_timer(1,0);
                    slowdown(CLOSE_CWND_INIT);
      // reset ssthresh to half of W-D/2?
                    qs_window_ = 0;
                    output(last_ack_ + 1, TCP_REASON_DUPACK);
                    return 1;
           }
           return 0;
    }

     


    /*
     * main reception path - should only see acks, otherwise the
     * network connections are misconfigured
     */
    void TcpAgent::recv(Packet *pkt, Handler*)
    {
     hdr_tcp *tcph = hdr_tcp::access(pkt);               //接受分组TCP头
     int valid_ack = 0;
     if (qs_approved_ == 1 && tcph->seqno() > last_ack_)           //快启动处理,不看 
      endQuickStart();
     if (qs_requested_ == 1)
      processQuickStart(pkt);
    #ifdef notdef
     if (pkt->type_ != PT_ACK) {                                         //ACK包类型判断
      Tcl::instance().evalf("%s error /"received non-ack/"",
              name());
      Packet::free(pkt);
      return;                                                                   //不是ACK包,退出
     }
    #endif
     /* W.N.: check if this is from a previous incarnation */
     if (tcph->ts() < lastreset_) {            //判断是否上次连接的尸体包
      // Remove packet and do nothing
      Packet::free(pkt);                    //是尸体分组,释放该分组内存,并退出
      return;
     }
     ++nackpack_;                              //ACK包数+1
     ts_peer_ = tcph->ts();                   //记录对端发此ACK包时的时间
     int ecnecho = hdr_flags::access(pkt)->ecnecho();       //ECN处理,不看
     if (ecnecho && ecn_)
      ecn(tcph->seqno());
     recv_helper(pkt);                                                      //helper处理,不必看
     recv_frto_helper(pkt);
     /* grow cwnd and check if the connection is done */ 
     if (tcph->seqno() > last_ack_) {                 //本ACK序号>上次记录的ACK序号,表示是新的ACK       
      recv_newack_helper(pkt);                     //新ACK的helper
      if (last_ack_ == 0 && delay_growth_) {     //是连接以来的第一个ACK
       cwnd_ = initial_window();                    //初始化CWND
      }                                                      //下面一段处理重复ACK
     } else if (tcph->seqno() == last_ack_) {                // 不是新ACK,是上次的重复ACK
                    if (hdr_flags::access(pkt)->eln_ && eln_) {            //ELN处理,不必看
                            tcp_eln(pkt);
                            return;
                    }
      if (++dupacks_ == numdupacks_ && !noFastRetrans_) {   //重复ACK数=numdupacks并且允许快速重传时,表示满足了快速快速重传条件,但tahoe中不支持快速重传
       dupack_action();                                           //快速重传动作,用于减少CWND和SSTHRESH,并重启重传定时器
      } else if (dupacks_ < numdupacks_ && singledup_ ) {    //这里singledup_是系统的固定值,这里使TCP不采用快速重传策略,
       send_one();                                                            //而是收到一个或两个重复ACK,就重传的策略
      }
     }

     if (QOption_ && EnblRTTCtr_)                                            //QOPTION,不必看
      process_qoption_after_ack (tcph->seqno());

     if (tcph->seqno() >= last_ack_)                                          //本ACK序号>=上次ACK,表示是新ACK或重复ACK,是合法的
      // Check if ACK is valid.  Suggestion by Mark Allman. 
      valid_ack = 1;
     Packet::free(pkt);                                                             //合法,回收该分组内存
     /*
      * Try to send more data.
      */
     if (valid_ack || aggressive_maxburst_)   //aggressive_maxburst_默认为1,接收处理完了,继续发送尽可能多的分组
      send_much(0, 0, maxburst_);
    }

     


    /*处理非重传的超时,即用于将发送数据进行随机延迟,模拟网络的延迟情况
     * Process timeout events other than rtx timeout. Having this as a separate 
     * function allows derived classes to make alterations/enhancements (e.g.,
     * response to new types of timeout events).
     */ 
    void TcpAgent::timeout_nonrtx(int tno) 
    {
     if (tno == TCP_TIMER_DELSND)  {
      /*
       * delayed-send timer, with random overhead
       * to avoid phase effects
       */
      send_much(1, TCP_REASON_TIMEOUT, maxburst_);
     }
    }

     


    //直接被几个定时器的expire()调用,即在超时后,各定时器通过超时类型,选择执行下面代码 
    void TcpAgent::timeout(int tno)
    {
     /* retransmit timer */
     if (tno == TCP_TIMER_RTX) {               //超时重传的情况

      // There has been a timeout - will trace this event
      trace_event("TIMEOUT");              //跟踪超时

      frto_ = 0;                                  //F-RTO        
      // Set pipe_prev as per Eifel Response
      pipe_prev_ = (window() > ssthresh_) ?
       window() : (int)ssthresh_;

             if (cwnd_ < 1) cwnd_ = 1;             //CWND至少为1
      if (qs_approved_ == 1) qs_approved_ = 0;
      
      //此段对SSTHRESH和CWND做出调整
      if (highest_ack_ == maxseq_ && !slow_start_restart_) {
       /* 无显著数据:即发送的数据都已收到了应答
          这是无显著数据并且不是慢启动重启的情况,什么都不做,正常不会出现
        * TCP option:
        * If no outstanding data, then don't do anything.  
        */
        // Should this return be here?
        // What if CWND_ACTION_ECN and cwnd < 1?
        // return;
      } else {  //
       recover_ = maxseq_;
       if (highest_ack_ == -1 && wnd_init_option_ == 2)
        /* 上次ack号为-1,表示未收到ACK,第一个分组丢失了
         * First packet dropped, so don't use larger
         * initial windows. 
         */
        wnd_init_option_ = 1;
       if (highest_ack_ == maxseq_ && restart_bugfix_)
              /* 无显著数据的情况
        * if there is no outstanding data, don't cut 
        * down ssthresh_.
        */
        slowdown(CLOSE_CWND_ONE|NO_OUTSTANDING_DATA);
       else if (highest_ack_ < recover_ &&
         last_cwnd_action_ == CWND_ACTION_ECN) {
              /*
        * if we are in recovery from a recent ECN,
        * don't cut down ssthresh_.
        */
        slowdown(CLOSE_CWND_ONE);
        if (frto_enabled_ || sfrto_enabled_) {
         frto_ = 1;
        }
       }
       else {  //
        ++nrexmit_;         //重传超时计数+1
        last_cwnd_action_ = CWND_ACTION_TIMEOUT;   //记录本次超时
        slowdown(CLOSE_SSTHRESH_HALF|CLOSE_CWND_RESTART); //超时,ssthresh减半,cwnd重启动
        if (frto_enabled_ || sfrto_enabled_) {
         frto_ = 1;
        }
       }
      }
      /* if there is no outstanding data, don't back off rtx timer */
      if (highest_ack_ == maxseq_ && restart_bugfix_) {    //无显著数据,重新设置重传定时器
       reset_rtx_timer(0,0);
      }
      else {
       reset_rtx_timer(0,1);         //这是发送的数据有未收到ACK的情况,这时是重传,backoff=1,使RTO翻倍
      }
      last_cwnd_action_ = CWND_ACTION_TIMEOUT;  //记录本次超时
      send_much(0, TCP_REASON_TIMEOUT, maxburst_);   //重传尽可能多的数据
     } 
     else {
      timeout_nonrtx(tno);         //不是超时重传的情况,如:tno == TCP_TIMER_DELSND
     }
    }

     

    /* 
     * Check if the packet (ack) has the ELN bit set, and if it does, and if the
     * last ELN-rxmitted packet is smaller than this one, then retransmit the
     * packet.  Do not adjust the cwnd when this happens.
     */
    void TcpAgent::tcp_eln(Packet *pkt)
    {
            //int eln_rxmit;
            hdr_tcp *tcph = hdr_tcp::access(pkt);
            int ack = tcph->seqno();

            if (++dupacks_ == eln_rxmit_thresh_ && ack > eln_last_rxmit_) {
                    /* Retransmit this packet */
                    output(last_ack_ + 1, TCP_REASON_DUPACK);
                    eln_last_rxmit_ = last_ack_+1;
            } else
                    send_much(0, 0, maxburst_);

            Packet::free(pkt);
            return;
    }

     

    /*
     * This function is invoked when the connection is done. It in turn
     * invokes the Tcl finish procedure that was registered with TCP.
     */
    void TcpAgent::finish()
    {
     Tcl::instance().evalf("%s done", this->name());
    }

     

    void RtxTimer::expire(Event*)
    {
     a_->timeout(TCP_TIMER_RTX);
    }

     

    void DelSndTimer::expire(Event*)
    {
     a_->timeout(TCP_TIMER_DELSND);
    }

     

    void BurstSndTimer::expire(Event*)
    {
     a_->timeout(TCP_TIMER_BURSTSND);
    }

    /*
     * THE FOLLOWING FUNCTIONS ARE OBSOLETE, but REMAIN HERE
     * DUE TO OTHER PEOPLE's TCPs THAT MIGHT USE THEM
     *
     * These functions are now replaced by ecn() and slowdown(),
     * respectively.
     */

     

    /*
     * Respond either to a source quench or to a congestion indication bit.
     * This is done at most once a roundtrip time;  after a source quench,
     * another one will not be done until the last packet transmitted before
     * the previous source quench has been ACKed.
     */
    //不被调用?是否其他非tahoe的TCP协议使用?
    void TcpAgent::quench(int how)
    {
     if (highest_ack_ >= recover_) {
      recover_ =  maxseq_;
      last_cwnd_action_ = CWND_ACTION_ECN;
      closecwnd(how);
     }
    }

     

    /*
     * close down the congestion window
     */
    //仅仅被quench所调用
    void TcpAgent::closecwnd(int how)
    {   
     static int first_time = 1;
     if (first_time == 1) {
      fprintf(stderr, "the TcpAgent::closecwnd() function is now deprecated, please use the function slowdown() instead/n");
     }
     switch (how) {
     case 0:
      /* timeouts */
      ssthresh_ = int( window() / 2 );
      if (ssthresh_ < 2)
       ssthresh_ = 2;
      cwnd_ = int(wnd_restart_);
      break;

     case 1:
      /* Reno dup acks, or after a recent congestion indication. */
      // cwnd_ = window()/2;
      cwnd_ = decrease_num_ * window();
      ssthresh_ = int(cwnd_);
      if (ssthresh_ < 2)
       ssthresh_ = 2;  
      break;

     case 2:
      /* Tahoe dup acks    
       * after a recent congestion indication */
      cwnd_ = wnd_init_;
      break;

     case 3:
      /* Retransmit timeout, but no outstanding data. */ 
      cwnd_ = int(wnd_init_);
      break;
     case 4:
      /* Tahoe dup acks */
      ssthresh_ = int( window() / 2 );
      if (ssthresh_ < 2)
       ssthresh_ = 2;
      cwnd_ = 1;
      break;

     default:
      abort();
     }
     fcnt_ = 0.;
     count_ = 0;
    }

     

    /*
     * Check if the sender has been idle or application-limited for more
     * than an RTO, and if so, reduce the congestion window.
     */
    void TcpAgent::process_qoption_after_send ()
    {
     int tcp_now = (int)(Scheduler::instance().clock()/tcp_tick_ + 0.5);
     int rto = (int)(t_rtxcur_/tcp_tick_) ; 
     /*double ct = Scheduler::instance().clock();*/

     if (!EnblRTTCtr_) {
      if (tcp_now - T_last >= rto) {
       // The sender has been idle.
        slowdown(THREE_QUARTER_SSTHRESH|TCP_IDLE) ;
       for (int i = 0 ; i < (tcp_now - T_last)/rto; i ++) {
        slowdown(CWND_HALF_WITH_MIN|TCP_IDLE);
       }
       T_prev = tcp_now ;
       W_used = 0 ;
      }
      T_last = tcp_now ;
      if (t_seqno_ == highest_ack_+ window()) {
       T_prev = tcp_now ; 
       W_used = 0 ; 
      }
      else if (t_seqno_ == curseq_-1) {
       // The sender has no more data to send.
       int tmp = t_seqno_ - highest_ack_ ;
       if (tmp > W_used)
        W_used = tmp ;
       if (tcp_now - T_prev >= rto) {
        // The sender has been application-limited.
        slowdown(THREE_QUARTER_SSTHRESH|TCP_IDLE);
        slowdown(CLOSE_CWND_HALF_WAY|TCP_IDLE);
        T_prev = tcp_now ;
        W_used = 0 ;
       }
      }
     } else {
      rtt_counting();
     }
    }

     

    /*
     * Check if the sender has been idle or application-limited for more
     * than an RTO, and if so, reduce the congestion window, for a TCP sender
     * that "counts RTTs" by estimating the number of RTTs that fit into
     * a single clock tick.
     */
    //仅被process_qoption_after_send ()所调用,不看
    void
    TcpAgent::rtt_counting()
    {
            int tcp_now = (int)(Scheduler::instance().clock()/tcp_tick_ + 0.5);
     int rtt = (int(t_srtt_) >> T_SRTT_BITS) ;

     if (rtt < 1) 
      rtt = 1 ;
     if (tcp_now - T_last >= 2*rtt) {
      // The sender has been idle.
      int RTTs ; 
      RTTs = (tcp_now -T_last)*RTT_goodcount/(rtt*2) ; 
      RTTs = RTTs - Backoffs ; 
      Backoffs = 0 ; 
      if (RTTs > 0) {
       slowdown(THREE_QUARTER_SSTHRESH|TCP_IDLE) ;
       for (int i = 0 ; i < RTTs ; i ++) {
        slowdown(CWND_HALF_WITH_MIN|TCP_IDLE);
        RTT_prev = RTT_count ; 
        W_used = 0 ;
       }
      }
     }
     T_last = tcp_now ;
     if (tcp_now - T_start >= 2*rtt) {
      if ((RTT_count > RTT_goodcount) || (F_full == 1)) {
       RTT_goodcount = RTT_count ; 
       if (RTT_goodcount < 1) RTT_goodcount = 1 ; 
      }
      RTT_prev = RTT_prev - RTT_count ;
      RTT_count = 0 ; 
      T_start  = tcp_now ;
      F_full = 0;
     }
     if (t_seqno_ == highest_ack_ + window()) {
      W_used = 0 ; 
      F_full = 1 ; 
      RTT_prev = RTT_count ;
     }
     else if (t_seqno_ == curseq_-1) {
      // The sender has no more data to send.
      int tmp = t_seqno_ - highest_ack_ ;
      if (tmp > W_used)
       W_used = tmp ;
      if (RTT_count - RTT_prev >= 2) {
       // The sender has been application-limited.
       slowdown(THREE_QUARTER_SSTHRESH|TCP_IDLE) ;
       slowdown(CLOSE_CWND_HALF_WAY|TCP_IDLE);
       RTT_prev = RTT_count ; 
       Backoffs ++ ; 
       W_used = 0;
      }
     }
     if (F_counting == 0) {
      W_timed = t_seqno_  ;
      F_counting = 1 ;
     }
    }

     

    void TcpAgent::process_qoption_after_ack (int seqno)
    {
     if (F_counting == 1) {
      if (seqno >= W_timed) {
       RTT_count ++ ; 
       F_counting = 0 ; 
      }
      else {
       if (dupacks_ == numdupacks_)
        RTT_count ++ ;
      }
     }
    }

     

    void TcpAgent::trace_event(char *eventtype)
    {
     if (et_ == NULL) return;
     int seqno = t_seqno_;
     char *wrk = et_->buffer();
     char *nwrk = et_->nbuffer();
     if (wrk != 0)
      sprintf(wrk,
       "E "TIME_FORMAT" %d %d TCP %s %d %d %d",
       et_->round(Scheduler::instance().clock()),   // time
       addr(),                       // owner (src) node id
       daddr(),                      // dst node id
       eventtype,                    // event type
       fid_,                         // flow-id
       seqno,                        // current seqno
       int(cwnd_)                         //cong. window
       );
     
     if (nwrk != 0)
      sprintf(nwrk,
       "E -t "TIME_FORMAT" -o TCP -e %s -s %d.%d -d %d.%d",
       et_->round(Scheduler::instance().clock()),   // time
       eventtype,                    // event type
       addr(),                       // owner (src) node id
       port(),                       // owner (src) port id
       daddr(),                      // dst node id
       dport()                       // dst port id
       );
     et_->trace();
    }


    /*
    结论1:接收RECV和发送OUTPUT时都没有去/自对方的窗口大小通告,
    拥塞仅凭借自己的推算来进行发送端的拥塞控制,对端的通告窗口设为一个常量wnd_,
    本端发送窗口为min(cwnd_,wnd_),范围为:  highest_ack----highest_ack+win

    发送窗口:从未确认的最小序号开始,如下                        
                       1         2          3          4      
                  ----------|----------|----------|---------- 
                         SND.UNA    SND.NXT    SND.UNA        
                                              +SND.WND 


    结论2:有三个超时定时器
             rtxtimer        用于重传超时
             delsndtimer     用于随机产生延迟,模拟网络的延迟?发送端延迟?
             burstsndtimer   ? 用途不明,sendmuch中有一句,但程序中没有用处,
                            它超时调用timeout,但timeout和timeout_nonrtx没有对TCP_TIMER_BURSTSND的处理
                            可能是非tahoe的TCP协议使用
    */

    /*
    F-RTO算法:

        有人指出,重传定时器可能虚假超时,引起未丢失段不必要的重传[LK00, GL02,
    LM03]。在虚假的重传超时发生后,源发送段迟到的确认到达了发送方,通常会在RTO
    恢复期间触发一个不必要的整个窗口的重传。而且,在虚假重传超时后,通常TCP发送
    方处于慢启动阶段,在此期间每次收到迟到的确认时,就使拥塞窗口增加1。这使在一
    个往返时间内,大量的数据段涌入网络,从而违背了“数据包守恒”的原则[Jac88]。

        当RTO到期后,F-RTO发送方像通常一样,重传第一个未确认段[APS99]。不同于
    通常操作的是,对于第一个超时后的到达的确认(假设该确认在窗口之前),它开始
    发送新的、当前未发送过的数据。如果在超时后到达的第二个确认在窗口之前(比如
    说:未被重传的确认数据),F-RTO发送方宣布超时是虚假的,并且退出RTO恢复。
    然而,如果两个确认的任意一个是重复ACK,就没有明显的证据表明超时是虚假超时。
    因此,此时F-RTO发送方采用传统的慢启动策略,重传未确认段。采用SACK增强版本
    的F-RTO算法,在RTO重传后收到重复ACK时,仍然可以检测出虚假超时。

         算法(rfc4138)
        
        1)当RTO到期时,重传第一个未确认段,并设SpuriousRecovery为FALSE。同时,
    将最高的已发送序号存入变量“recover”中。
        
        2)当RTO重传后的第一个确认到达发送方,发送方按照是否该ACK在窗口之前,
    或是否该ACK为重复确认,选择下面的其中一步。

              a)如果该确认是重复ACK,或是等于“recover”序号值的段,或是没有确
          认第1步重传的所有数据,则转回到常规的RTO恢复过程,开始慢启动过程,并
          重传未确认数据。切勿进入本算法的第3步。“SpuriousRecovery”参数保持为
          FALSE。
        
              b)否则,如果该确认在窗口之前并且它小于“recover”值,发送两个新段
          (前面未发送过的段),并转入本算法的第3步。如果TCP发送方没有足够的未发送
          数据,则只发送一个段。另外,TCP发送方可能略过Nagle算法[Nag84],需要的
          时候直接发送一个段。注意发送两个段符合TCP拥塞控制的要求[APS99]:F-RTO
          的TCP发送方只需要选择不同的段发送出去。
            
              如果TCP发送方并没有任何新的数据发送,或通告窗口不允许发送新数据,
          推荐操作是跳过本算法的第3步,按照常规RTO恢复算法,继续慢启动重传。然而,
          一些处理窗口受限的替换方法可以取得更好的性能,这将在附件C中讨论。
            
        3)当RTO重传后的第二个确认到达发送方时,TCP发送方可以选择宣布超时是虚假的,
        或者也可以开始重传未确认的段。
            
              a)如果该确认是重复确认,将拥塞窗口设置为不超过3×MSS,并且继续慢
          启动策略,重传未确认的段。拥塞窗口可以设为3×MSS,因为在RTO超时后,已经
          过了两个往返时间,同时常规的TCP发送方已经增加cwnd到了3。保持参数
          SpuriousRecovery为FALSE。
            
              b)如果该确认在窗口之前(比如,它确认了超时后没有重传的数据),则
          则宣布超时是虚假的,设置SpuriousRecovery为SPUR_TO,并将“recover”变量值
          设为SNA.UNA(最后一个未确认的序号)。
    讨论

        当重传超时后收到重复确认时,F-RTO发送方采取了谨慎的措施。因为重复确认
    表示有可能段已经丢失,由于缺乏其他信息,可靠地检测一个虚假超时是很困难的。
    因此,在这种情况下,算法谨慎地遵循了常规的TCP恢复方法。

        在算法(2a)中,如果RTO重传后的第一个确认涵盖了“recover”点,则没有证据
    表明超时后有非重传段到达接收方。一种常见情况是,快速重传丢失,RTO超时后,
    该段又被重传,同时,在重传超时后,其他的未确认段成功地送到TCP接收端。因此,
    此时该超时不能宣布为假超时。  
        
        如果RTO重传后的第一个确认没有确认第1步中重传的所有数据,TCP发送方转到
    常规的RTO恢复程序。否则,不怀好意的接收方只确认部分数据,会导致发送方会在
    数据丢失时宣布虚假超时。

        在算法分支(2b)中,TCP发送方允许发送两个新段,因为在常规TCP中,RTO重传
    后,当收到新的ACK,发送方将发送两个段。如果在算法分支(2b)中不能发送新段,
    或是接收窗口限制了传输,TCP发送方必须要发送数据以防止TCP停转。如果没有数据
    发送了,发送方和接收方在管道允许的范围内可能都已经发完了段,不会再有下一个
    确认到达。因此,在窗口受限的情况下,推荐转回常规的RTO慢启动重传恢复阶段。
    附件C讨论了一些可选的窗口受限情况。

        如果重传超时被宣布为虚假,TCP发送方将“recover”变量设置为SNA.UNA,
    以允许快速重传[FHG04]。“recover”变量用于在NewReno TCP快速恢复期间,当RTO
    超时时,避免不必要的、成倍的快速重传。因为发送方只重传哪些触发了超时的段,
    不必要的成倍快速重传的问题不可能发生。因此,如果超时后有3个重复ACK到达了
    发送方,就表示可能丢失了包,使用快速重传以加快恢复效率。如果包丢失后没有
    足够的重复ACK到达接收方,重传定时器又会出现超时,发送方即转入算法的第1步。
        
        当超时被宣布为虚假时,TCP发送方不能检测到是否存在不必要的RTO重传丢失。
    原则上,RTO的重传丢失应该被视为一个拥塞信号。因此,如果在检测到虚假超时后,
    F-RTO发送方选择完全还原到拥塞控制参数,则违反拥塞控制原则的可能性较小。
    Eifel检测算法有相似的性质,其DSACK选项可以用于检测是否重传段成功地发送到
    了接收方。

        F-RTO算法在TCP往返时间测算中有副作用。TCP发送方在检测到虚假超时后,
    能避免大多数不必要的重传,这使发送方能够在延迟的段上取得往返时间的采样。
    如果在不使用TCP时间戳时采用常规的RTO恢复策略,因为重传的模糊性,不会出现
    这种情况。结果是,同常规TCP比较,由于采用了F-RTO,在因为段的延迟而触发了
    虚假超时,使RTO趋向于更精确,数值更大。我们相信在那些延迟尖峰较多的网络
    中,这是一个优势。

        在虚假超时后,存在F-RTO算法不能避免产生不必要重传的情况。如果包重排
    序或重复包出现在触发虚假超时的段中,由于收到的重复ACK,F-RTO算法可能不能
    检测虚假超时。另外,如果虚假超时发生在快速重传中,由于一些段在快速恢复触
    发重复ACK前发送,F-RTO算法通常不能检测虚假重传。然而,我们认为这些情况
    很少出现,注意在F-RTO没能检测到虚假超时的情况下,它采用慢启动策略,重传
    未确认段,同常规的RTO恢复方法相似。

          
    拥塞算法的具体响应措施见  rfc4015

  • 相关阅读:
    12345679*81=?
    怪异,漂亮的几个数学恒等式(转)
    道路着色问题
    一组数学算式的欣赏(转)
    数学中奇妙的“金蝉脱壳”(转)
    数学中的分分合合(转)
    四方定理和卡布列克常数(转)
    简单的题目 有趣的现象
    Android学习笔记 第三节 基本控件学习
    Android学习笔记 第二节 HelloWorld程序
  • 原文地址:https://www.cnblogs.com/huangmr0811/p/5571034.html
Copyright © 2011-2022 走看看