zoukankan      html  css  js  c++  java
  • hdu 3549 Flow Problem 网络流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3549

    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
    题意:不能再简单了这题意,很裸的告诉你根据输入来求解最大流。
    解法:网络流算法求解最大流,模板题,Dinic。
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<cmath>
     6 #include<algorithm>
     7 #include<queue>
     8 #define inf 0x7fffffff
     9 using namespace std;
    10 const int maxn=16;
    11 
    12 int n,m;
    13 int graph[maxn][maxn],d[maxn];
    14 
    15 int bfs()
    16 {
    17     memset(d,0,sizeof(d));
    18     d[1]=1;
    19     queue<int> Q;
    20     Q.push(1);
    21     while (!Q.empty())
    22     {
    23         int u=Q.front() ;Q.pop() ;
    24         for (int v=1 ;v<=n ;v++)
    25         {
    26             if (!d[v] && graph[u][v]>0)
    27             {
    28                 d[v]=d[u]+1;
    29                 Q.push(v);
    30                 if (v==n) return 1;
    31             }
    32         }
    33     }
    34     return 0;
    35 }
    36 
    37 int dfs(int u,int flow)
    38 {
    39     if (u==n || flow==0) return flow;
    40     int cap=flow;
    41     for (int v=1 ;v<=n ;v++)
    42     {
    43         if (d[v]==d[u]+1 && graph[u][v]>0)
    44         {
    45             int x=dfs(v,min(cap,graph[u][v]));
    46             cap -= x;
    47             graph[u][v] -= x;
    48             graph[v][u] += x;
    49             if (cap==0) return flow;
    50         }
    51     }
    52     return flow-cap;
    53 }
    54 
    55 int Dinic()
    56 {
    57     int sum=0;
    58     while (bfs()) sum += dfs(1,inf);
    59     return sum;
    60 }
    61 
    62 int main()
    63 {
    64     int t,ncase=1;
    65     scanf("%d",&t);
    66     while (t--)
    67     {
    68         scanf("%d%d",&n,&m);
    69         int a,b,c;
    70         memset(graph,0,sizeof(graph));
    71         for (int i=0 ;i<m ;i++)
    72         {
    73             scanf("%d%d%d",&a,&b,&c);
    74             graph[a][b] += c;
    75         }
    76         printf("Case %d: %d
    ",ncase++,Dinic());
    77     }
    78     return 0;
    79 }
  • 相关阅读:
    .NET程序默认启动线程数
    TPL中Task执行的内联性线程重入
    Unity容器中的对象生存期管理
    C# 异步 TCP 服务器完整实现
    WPF中多源控制Button的状态
    C# 对 TCP 客户端的状态封装
    WPF异步MVVM等待窗体
    C#实现UDP分包组包
    C#实现RTP数据包传输
    PHP 传引用调用
  • 原文地址:https://www.cnblogs.com/huangxf/p/4265800.html
Copyright © 2011-2022 走看看