zoukankan      html  css  js  c++  java
  • zoj 2760 How Many Shortest Path 最大流

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760

    Given a weighted directed graph, we define the shortest path as the path who has the smallest length among all the path connecting the source vertex to the target vertex. And if two path is said to be non-overlapping, it means that the two path has no common edge. So, given a weighted directed graph, a source vertex and a target vertex, we are interested in how many non-overlapping shortest path could we find out at most.

    题目描述:求一个有向图起点到终点的边不相交的最短路径的条数。

    算法分析:floyd+最大流。针对网络流算法而建的模型中,s-t对应于实际中每一种方案,所以此题中的s-t就对应于题目中的一条源点到汇点的最短路径,最大流就是最短路径条数。

    接下来就是怎么建模的问题:既然s-t对应于一条最短路径,那么s-t路径上的每一条边都是路径中的最短边。所以首先用floyd求出点到点的最短路径,然后枚举每条边判断是否是最短路径上的边,若是,则加入到新建的图中,权值为1。

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<cstdlib>
      5 #include<cmath>
      6 #include<algorithm>
      7 #include<queue>
      8 #define inf 0x7fffffff
      9 using namespace std;
     10 const int maxn=100+10;
     11 
     12 int n,from,to;
     13 int dist[maxn][maxn],an[maxn][maxn];
     14 int d[maxn],graph[maxn][maxn];
     15 
     16 int bfs()
     17 {
     18     memset(d,0,sizeof(d));
     19     d[from]=1;
     20     queue<int> Q;
     21     Q.push(from);
     22     while (!Q.empty())
     23     {
     24         int u=Q.front() ;Q.pop() ;
     25         for (int v=0 ;v<n ;v++)
     26         {
     27             if (!d[v] && graph[u][v]>0)
     28             {
     29                 d[v]=d[u]+1;
     30                 Q.push(v);
     31                 if (v==to) return 1;
     32             }
     33         }
     34     }
     35     return 0;
     36 }
     37 
     38 int dfs(int u,int flow)
     39 {
     40     if (u==to || flow==0) return flow;
     41     int cap=flow;
     42     for (int v=0 ;v<n ;v++)
     43     {
     44         if (d[v]==d[u]+1 && graph[u][v]>0)
     45         {
     46             int x=dfs(v,min(cap,graph[u][v]));
     47             cap -= x;
     48             graph[u][v] -= x;
     49             graph[v][u] += x;
     50             if (cap==0) return flow;
     51         }
     52     }
     53     return flow-cap;
     54 }
     55 
     56 int dinic()
     57 {
     58     int sum=0;
     59     while (bfs()) sum += dfs(from,inf);
     60     return sum;
     61 }
     62 
     63 int main()
     64 {
     65     while (scanf("%d",&n)!=EOF)
     66     {
     67         for (int i=0 ;i<n ;i++)
     68         {
     69             for (int j=0 ;j<n ;j++)
     70             {
     71                 scanf("%d",&an[i][j]);
     72                 dist[i][j]=an[i][j];
     73             }
     74             dist[i][i]=an[i][i]=0;
     75         }
     76         scanf("%d%d",&from,&to);
     77         if (from==to) {printf("inf
    ");continue; }
     78         for (int k=0 ;k<n ;k++)
     79         {
     80             for (int i=0 ;i<n ;i++) if (i!=k)
     81             {
     82                 for (int j=0 ;j<n ;j++) if (j!=k && j!=i)
     83                 {
     84                     if (dist[i][k]!=-1 && dist[k][j]!=-1 &&
     85                         (dist[i][j]==-1 || dist[i][j]>dist[i][k]+dist[k][j]))
     86                             dist[i][j]=dist[i][k]+dist[k][j];
     87                 }
     88             }
     89         }
     90         //cout<<"dist[from][to]= "<<dist[from][to]<<endl;
     91         if (dist[from][to]==-1) {printf("0
    ");continue; }
     92         memset(graph,0,sizeof(graph));
     93         for (int i=0 ;i<n ;i++)
     94         {
     95             for (int j=0 ;j<n ;j++)
     96             {
     97                 if (i!=j && dist[from][to]!=-1 && dist[from][i]!=-1 && dist[j][to]!=-1 && an[i][j]!=-1 &&
     98                     dist[from][to]==dist[from][i]+an[i][j]+dist[j][to])
     99                         graph[i][j]=1;
    100             }
    101         }
    102         printf("%d
    ",dinic());
    103     }
    104     return 0;
    105 }
  • 相关阅读:
    uva 494 Kindergarten Counting Game
    uva 458
    Spring--quartz中cronExpression配置说明
    配置DTD提示的方法
    MySQL中怎么查询一张表的列数
    mysql 数据库的名称不能以数字开头
    Navicat: Can't create a procedure from within another stored routine
    解决JQUERY $符号的冲突
    如何截取iframe的内容,修改他的CSS
    struct框架
  • 原文地址:https://www.cnblogs.com/huangxf/p/4299733.html
Copyright © 2011-2022 走看看