zoukankan      html  css  js  c++  java
  • 【部分原创】python实现视频内的face swap(换脸)

    1.准备工作,按博主的环境为准

    Python 3.5

    Opencv 3

    Tensorflow 1.3.1

    Keras 2

    cudnn和CUDA,如果你的GPU足够厉害并且支持的话,可以选择安装

    那就先安装起来,有兴趣的朋友给我个暗示,好让我有动力写下去,想实现整套的功能还是有点复杂的

    第一部分,数据采集,及视频内人物脸

    import cv2
    
    save_path = 'your save path'
    cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml path')
    cap = cv2.VideoCapture('your video path')
    i = 0
    while True:
        ret,frame = cap.read()
        gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
        rect = cascade.detectMultiScale(gray,scaleFactor=1.3,minNeighbors=9,minSize=(50,50),flags = cv2.CASCADE_SCALE_IMAGE)
        print ("rect",rect)
        if not rect is ():
            for x,y,z,w in rect:
                roiImg = frame[y:y+w,x:x+z]
                cv2.imwrite(save_path+str(i)+'.jpg',roiImg)
                cv2.rectangle(frame,(x,y),(x+z,y+w),(0,0,255),2)
                i +=1
        cv2.imshow('frame',frame)
        if cv2.waitKey(1) &0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()

    第二部分,国外大神开源代码,用于模型训练

    import cv2
    import numpy
    
    from utils import get_image_paths, load_images, stack_images
    from training_data import get_training_data
    
    from model import autoencoder_A
    from model import autoencoder_B
    from model import encoder, decoder_A, decoder_B
    
    try:
        encoder  .load_weights( "models/encoder.h5"   )
        decoder_A.load_weights( "models/decoder_A.h5" )
        decoder_B.load_weights( "models/decoder_B.h5" )
    except:
        pass
    
    def save_model_weights():
        encoder  .save_weights( "models/encoder.h5"   )
        decoder_A.save_weights( "models/decoder_A.h5" )
        decoder_B.save_weights( "models/decoder_B.h5" )
        print( "save model weights" )
    
    images_A = get_image_paths( "data/trump" )
    images_B = get_image_paths( "data/cage"  )
    images_A = load_images( images_A ) / 255.0
    images_B = load_images( images_B ) / 255.0
    
    images_A += images_B.mean( axis=(0,1,2) ) - images_A.mean( axis=(0,1,2) )
    
    print( "press 'q' to stop training and save model" )
    
    for epoch in range(1000000):
        batch_size = 64
        warped_A, target_A = get_training_data( images_A, batch_size )
        warped_B, target_B = get_training_data( images_B, batch_size )
    
        loss_A = autoencoder_A.train_on_batch( warped_A, target_A )
        loss_B = autoencoder_B.train_on_batch( warped_B, target_B )
        print( loss_A, loss_B )
    
        if epoch % 100 == 0:
            save_model_weights()
            test_A = target_A[0:14]
            test_B = target_B[0:14]
    
        figure_A = numpy.stack([
            test_A,
            autoencoder_A.predict( test_A ),
            autoencoder_B.predict( test_A ),
            ], axis=1 )
        figure_B = numpy.stack([
            test_B,
            autoencoder_B.predict( test_B ),
            autoencoder_A.predict( test_B ),
            ], axis=1 )
    
        figure = numpy.concatenate( [ figure_A, figure_B ], axis=0 )
        figure = figure.reshape( (4,7) + figure.shape[1:] )
        figure = stack_images( figure )
    
        figure = numpy.clip( figure * 255, 0, 255 ).astype('uint8')
    
        cv2.imshow( "", figure )
        key = cv2.waitKey(1)
        if key == ord('q'):
            save_model_weights()
            exit()

    第三部分,国外大神开源代码,人脸输出

    import cv2
    import numpy
    from pathlib import Path
    
    from utils import get_image_paths
    
    from model import autoencoder_A
    from model import autoencoder_B
    from model import encoder, decoder_A, decoder_B
    
    encoder  .load_weights( "models/encoder.h5"   )
    decoder_A.load_weights( "models/decoder_A.h5" )
    decoder_B.load_weights( "models/decoder_B.h5" )
    
    images_A = get_image_paths( "data/trump" )
    images_B = get_image_paths( "data/cage" )
    
    def convert_one_image( autoencoder, image ):
        assert image.shape == (256,256,3)
        crop = slice(48,208)
        face = image[crop,crop]
        face = cv2.resize( face, (64,64) )
        face = numpy.expand_dims( face, 0 )
        new_face = autoencoder.predict( face / 255.0 )[0]
        new_face = numpy.clip( new_face * 255, 0, 255 ).astype( image.dtype )
        new_face = cv2.resize( new_face, (160,160) )
        new_image = image.copy()
        new_image[crop,crop] = new_face
        return new_image
    
    output_dir = Path( 'output' )
    output_dir.mkdir( parents=True, exist_ok=True )
    
    for fn in images_A:
        image = cv2.imread(fn)
        new_image = convert_one_image( autoencoder_B, image )
        output_file = output_dir / Path(fn).name
        cv2.imwrite( str(output_file), new_image )

    第四部分,人脸替换

    #import necessary libraries
    import cv2
    import glob as gb
    # import numpy
    
    #capture video from the webcam
    cap = cv2.VideoCapture('your video path')
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    out = cv2.VideoWriter('your output video path', fourcc, 20.0, (1920, 1080))
    #load the face finder
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml path')
    
    #load the face that will be swapped in
    img_path = gb.glob("your image path")
    
    #start loop
    for path in img_path:
        face_img = cv2.imread(path)
        while True:
            ret, img = cap.read()  # read image
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            faces = face_cascade.detectMultiScale(gray, 1.3, 3)  # find faces
            # for all the faces found in the frame
            for (x, y, w, h) in faces:
                # resize and blend the face to be swapped in
                face = cv2.resize(face_img, (h, w), interpolation=cv2.INTER_CUBIC)
                face = cv2.addWeighted(img[y:y + h, x:x + w], .5, face, .5, 1)
                # swap faces
                img[y:y + h, x:x + w] = face
                out.write(img)
                # show the image
            cv2.imshow('img', img)
            key = cv2.waitKey(1)
            if key == ord('q'):
                exit()
    cap.release()
    cv2.destroyAllWindows()

    最后放一张训练一小时后的视频截图,用的是尼古拉斯凯奇的脸

  • 相关阅读:
    ubuntu
    long long 的输入输出问题
    hdu 4135 a到b的范围中多少数与n互质(容斥)
    hdu4757 可持续化01字典树+LCA
    E
    bzoj4260 求两个不相交的区间各自异或后相加的最大值。
    hdu4638 问一段区间能组成多少段连续的数
    hdu4637 计算俩运动对象的时间交
    hdu4632 回文子序列
    hdu4635 有向点双
  • 原文地址:https://www.cnblogs.com/huangxiaocheng/p/8269856.html
Copyright © 2011-2022 走看看