zoukankan      html  css  js  c++  java
  • Scipy Lecture Notes学习笔记(一)Getting started with Python for science 1.3. NumPy: creating and manipulating numerical data

    1.3. NumPy: creating and manipulating numerical data

    创建和操作数值数据

    摘要:

    • 了解如何创建数组:arrayarangeones, zeros

    • 了解数组的形状array.shape,然后使用切片来获得数组的不同视图:array[::2]等等。使用reshape或调平数组的形状来调整数组的形状ravel

    • 获取数组元素的子集和/或用掩码修改它们的值

      >>>
      >>> a [ a  <  0 ]  =  0
       
    • 知道数组上的其他操作,例如查找平均值或最大值(array.max()array.mean())。没有必要保留所有内容,但需要在文档中进行搜索(在线文档 help(),,lookfor())!

    • 高级用途:掌握整数数组的索引,以及广播。知道更多的NumPy函数来处理各种数组操作。

    numpy阵列:

    • 高级数字对象:整数,浮点数
    • 容器:列表(无成本的插入和追加),字典(快速查找)

    输入:

    import numpy as np
    a = np.array([0, 1, 2, 3])
    print(a)
    print(a.ndim)
    print(a.shape)

    输出:

    [0 1 2 3]
    1
    (4,)

    输入:

    b = np.array([[0, 1, 2], [3, 4, 5]])    # 2 x 3 array
    print(b.ndim)
    print(b.shape)
    len(b)

    输出:

    2
    (2, 3)
    2

    输入;np.arrange()

    a = np.arange(10) # 0 .. n-1  (!)
    print(a)
    b = np.arange(1, 9, 2) # start, end (exclusive), step
    print(b)

    输出:

    [0 1 2 3 4 5 6 7 8 9]
    [1 3 5 7]

    numpy阵列的创建arangelinspaceoneszeroseye和 diag ,输入:

    c = np.linspace(0, 1, 6) # start, end, num-points
    print(c)
    d = np.linspace(0, 1, 5, endpoint=False)
    print(d)
    e=np.ones(3)# 或者e=np.ones((3,3)) reminder: (3, 3) is a tuple
    print(e)
    f=np.eye(3,3)
    print(f)
    g=np.diag(np.array([1, 2, 3, 4]))
    print(g)
    h = np.zeros((2, 2))
    print(h)
    j = np.random.rand(4) 
    print(j)

    输出:

    [0.  0.2 0.4 0.6 0.8 1. ]
    [0.  0.2 0.4 0.6 0.8]
    [1. 1. 1.]
    [[1. 0. 0.]
     [0. 1. 0.]
     [0. 0. 1.]]
    [[1 0 0 0]
     [0 2 0 0]
     [0 0 3 0]
     [0 0 0 4]]
    [[0. 0.]
     [0. 0.]]
    [0.15299073 0.98066181 0.05337565 0.23230675]

    输入:

    x=np.arange(1,16).reshape(3,5)
    x

    输出:

    array([[ 1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10],
           [11, 12, 13, 14, 15]])

    1.3.1.4. Basic visualization

    输入:

    import matplotlib.pyplot as plt
    x = np.linspace(0, 3, 20) #start,stop,step
    y = np.linspace(0, 9, 20)
    print(x)
    print(y)
    plt.plot(x, y)       # line plot    
    plt.plot(x, y, 'o') 
    plt.show()

    输出:

    [0.         0.15789474 0.31578947 0.47368421 0.63157895 0.78947368
     0.94736842 1.10526316 1.26315789 1.42105263 1.57894737 1.73684211
     1.89473684 2.05263158 2.21052632 2.36842105 2.52631579 2.68421053
     2.84210526 3.        ]
    [0.         0.47368421 0.94736842 1.42105263 1.89473684 2.36842105
     2.84210526 3.31578947 3.78947368 4.26315789 4.73684211 5.21052632
     5.68421053 6.15789474 6.63157895 7.10526316 7.57894737 8.05263158
     8.52631579 9.        ]


    图像显示:

    输入:

    image = np.random.rand(30, 30)
    plt.imshow(image, cmap=plt.cm.hsv) 
    plt.colorbar()
    plt.show()

    输出:

    1.3.1.5. Indexing and slicing

     类似于list,标号从零开始

    输入:

    a = np.arange(10)
    print(a)
    print(a[2:9:3]) # [start:end:step]

    输出:

    [0 1 2 3 4 5 6 7 8 9]
    [2 5 8]

    这张图片可以很好的说明numpy阵列的索引

    Exercise: Indexing and slicing

    • Try the different flavours of slicing, using startend and step: starting from a linspace, try to obtain odd numbers counting backwards, and even numbers counting forwards.

    • Reproduce the slices in the diagram above. You may use the following expression to create the array:

     输入:

    import numpy as np
    print(np.arange(6)) 
    print(np.arange(0, 51, 10)[:, np.newaxis])
    print(np.arange(6)+np.arange(0, 51, 10)[:, np.newaxis])

    输出:

    [0 1 2 3 4 5]
    [[ 0]
     [10]
     [20]
     [30]
     [40]
     [50]]
    [[ 0  1  2  3  4  5]
     [10 11 12 13 14 15]
     [20 21 22 23 24 25]
     [30 31 32 33 34 35]
     [40 41 42 43 44 45]
     [50 51 52 53 54 55]]

    Exercise: Array creation

    Create the following arrays (with correct data types):

    Exercise: Array creation
    
    Create the following arrays (with correct data types):
    
    [[1, 1, 1, 1],
     [1, 1, 1, 1],
     [1, 1, 1, 2],
     [1, 6, 1, 1]]
    
    [[0., 0., 0., 0., 0.],
     [2., 0., 0., 0., 0.],
     [0., 3., 0., 0., 0.],
     [0., 0., 4., 0., 0.],
     [0., 0., 0., 5., 0.],
     [0., 0., 0., 0., 6.]]

    输入:

    a=np.ones((4,4))
    a[2,3]=2
    a[3,1]=6
    print(a)

    输出:

    [[1. 1. 1. 1.]
     [1. 1. 1. 1.]
     [1. 1. 1. 2.]
     [1. 6. 1. 1.]]

    输入:

    b=np.zeros((6,5))
    b[1:6,0:5]=np.diag(np.arange(2,7))
    b

    输出:

    array([[0., 0., 0., 0., 0.],
           [2., 0., 0., 0., 0.],
           [0., 3., 0., 0., 0.],
           [0., 0., 4., 0., 0.],
           [0., 0., 0., 5., 0.],
           [0., 0., 0., 0., 6.]])

    1.3.2. Numerical operations on arrays

    数组上的数值运算

    1.3.2.1. Elementwise operations元素操作

    所有的算术运算都是以元素的

    输入:

    a = np.array([1, 2, 3, 4])
    print(a)
    print(a+1)
    print(2**a)
    b = np.ones(4) + 1
    print(a*b) #阵列乘法都是以元素为运算单位
    print(a.dot(a))#如果想实现矩阵乘法,则采用.dot()运算
    a = np.array([1, 1, 0, 0], dtype=bool)
    b = np.array([1, 0, 1, 0], dtype=bool)
    print(np.logical_or(a, b))
    print(np.logical_and(a, b))
    a = np.arange(1,5)
    print(np.sin(a))
    print(np.log(a))
    print(np.exp(a))
    a = np.triu(np.ones((3, 3)), 1)#构建上三角矩阵
    print(a)
    print(a.T) #矩阵转置

    输出:

    [1 2 3 4]
    [2 3 4 5]
    [ 2  4  8 16]
    [2. 4. 6. 8.]
    30
    [ True  True  True False]
    [ True False False False]
    [ 0.84147098  0.90929743  0.14112001 -0.7568025 ]
    [0.         0.69314718 1.09861229 1.38629436]
    [ 2.71828183  7.3890561  20.08553692 54.59815003]
    [[0. 1. 1.]
     [0. 0. 1.]
     [0. 0. 0.]]
    [[0. 0. 0.]
     [1. 0. 0.]
     [1. 1. 0.]]

    1.3.2.2. Basic reductions

    sum(),min(),argmin(),argmax(),mean(),

    输入:

    x = np.array([1, 2, 3, 4])
    print(x.sum())
    x = np.array([[1, 1], [2, 2]])
    print(x)
    print(x.sum(axis=0))   # columns (first dimension)
    print(x[:, 0].sum(), x[:, 1].sum())
    print(x.sum(axis=1))   # rows (second dimension)
    print(x[0, :].sum(), x[1, :].sum())

    输出:

    10
    [[1 1]
     [2 2]]
    [3 3]
    3 3
    [2 4]
    2 4

    输入:

    x = np.array([1, 2, 3, 4])
    print(x.min())
    print(x.max())
    print(x.argmin()) # index of minimum
    print(x.argmax())  # index of maximum

    输出:

    1
    4
    0
    3

    输入:

    x = np.array([1, 2, 3, 4])
    print(x.min())
    print(x.max())
    print(x.argmin()) # index of minimum
    print(x.argmax())  # index of maximum
    print(x.mean())
    print(np.median(x))
    y = np.array([[1, 2, 3], [5, 6, 1]])
    print(y)
    print(np.median(y, axis=-1)) # last axis
    print(x.std())

    输出:

    1
    4
    0
    3
    2.5
    2.5
    [[1 2 3]
     [5 6 1]]
    [2. 5.]
    1.118033988749895

    输入:

    a = np.zeros((100, 100))
    print(np.any(a != 0))
    print(np.all(a == a))

    输出:

    False
    True

    工作示例:使用随机游走算法进行扩散

    ../../_images/random_walk.png

     

     

    让我们考虑一个简单的一维随机游走过程:在每个步骤中,步行者以相等的概率向右或向左跳。

    我们感兴趣的是在t左或右跳之后寻找随机游走者的起源的典型距离我们将模拟许多“步行者”来找到这条法则,我们将使用数组计算技巧来做到这一点:我们将在一个方向上创建一个带有“故事”(每个步行者都有故事)的2D数组:

    左图表示,从原点开始,如果开始第一步选择了向1正方向一定,那么此时位置为1,如果第二部步仍然选择了向正方向1移动,那么此时位置为2

    n_stories = 1000 # number of walkers
    t_max = 200      # time during which we follow the walker
    t = np.arange(t_max)
    steps = 2 * np.random.randint(0, 1 + 1, (n_stories, t_max)) - 1 # +1 because the high value is exclusive
    #随机游走就是一个随机过程,我们让1000个人每次随机游走200步,用上述随机产生1或者-1模拟当前前进过程随机,前进或者
    #后退的过程都是随机的
    print('steps = ',steps)
    print('unique(steps) = ',np.unique(steps)) # Verification: all steps are 1 or -1
    
    #We build the walks by summing steps along the time:
    positions = np.cumsum(steps, axis=1) # axis = 1: dimension of time
    sq_distance = positions**2
    print('positions=',positions) #positions是一个200*1000的结构
    print('sq_distance=',sq_distance)
    
    #We get the mean in the axis of the stories:
    mean_sq_distance = np.mean(sq_distance, axis=0)
    
    plt.figure(figsize=(4, 3)) 
    
    plt.plot(t, np.sqrt(mean_sq_distance), 'g.', t, np.sqrt(t), 'y-') 
    
    plt.xlabel(r"$t$") 
    
    plt.ylabel(r"$sqrt{langle (delta x)^2 
    angle}$") 
    
    plt.tight_layout() # provide sufficient space for labels
    plt.show()

    输出:

    steps =  [[-1  1 -1 ...  1 -1 -1]
     [ 1  1 -1 ...  1  1  1]
     [-1  1 -1 ...  1  1 -1]
     ...
     [-1  1  1 ...  1 -1  1]
     [ 1 -1 -1 ... -1 -1 -1]
     [ 1  1 -1 ...  1  1 -1]]
    unique(steps) =  [-1  1]
    positions= [[ -1   0  -1 ...   0  -1  -2]
     [  1   2   1 ...   2   3   4]
     [ -1   0  -1 ...   4   5   4]
     ...
     [ -1   0   1 ... -20 -21 -20]
     [  1   0  -1 ... -10 -11 -12]
     [  1   2   1 ...   0   1   0]]
    sq_distance= [[  1   0   1 ...   0   1   4]
     [  1   4   1 ...   4   9  16]
     [  1   0   1 ...  16  25  16]
     ...
     [  1   0   1 ... 400 441 400]
     [  1   0   1 ... 100 121 144]
     [  1   4   1 ...   0   1   0]]

    我们发现了一个众所周知的物理结果:RMS距离随着时间的平方根而增长!

    1.3.2.3. Broadcasting

    以下三种形式得到的最终结果是一样的

    一个实用的trick
    输入:
    a = np.arange(0, 40, 10)
    print(a.shape)
    a = a[:, np.newaxis]  # adds a new axis -> 2D array
    print(a.shape)
    print('a=',a)
    print('b=',b)
    print('a + b=',a+b)

    输出:

    (4,)
    (4, 1)
    a= [[ 0]
     [10]
     [20]
     [30]]
    b= [ True False  True False]
    a + b= [[ 1  0  1  0]
     [11 10 11 10]
     [21 20 21 20]
     [31 30 31 30]]

    输入:

    x, y = np.arange(5), np.arange(5)[:, np.newaxis]
    distance = np.sqrt(x ** 2 + y ** 2) #距离是两者平方之和
    print(distance)
    plt.pcolor(distance)    
    plt.colorbar() 
    plt.show()

    输出:

    [[0.         1.         2.         3.         4.        ]
     [1.         1.41421356 2.23606798 3.16227766 4.12310563]
     [2.         2.23606798 2.82842712 3.60555128 4.47213595]
     [3.         3.16227766 3.60555128 4.24264069 5.        ]
     [4.         4.12310563 4.47213595 5.         5.65685425]]

    1.3.2.4. Array shape manipulation

    平铺

    输入:

    a = np.array([[1, 2, 3], [4, 5, 6]])
    print(a)
    print(a.ravel())

    输出:

    [[1 2 3]
     [4 5 6]]
    [1 2 3 4 5 6]

    输入:

    #注意: reshape may also return a copy!:
    a = np.zeros((3, 2))
    b = a.T.reshape(3*2)
    b[0] = 9
    a

    输出:从结果可以看出,a的值并没有发生变化

    array([[0., 0.],
           [0., 0.],
           [0., 0.]])

    输入:

    z = np.array([1, 2, 3])
    print(z)
    print(z[:, np.newaxis])
    print(z[np.newaxis, :])

    输出:

    [1 2 3]
    [[1]
     [2]
     [3]]
    [[1 2 3]]

    Experiment with transpose for dimension shuffling.

    1.3.2.5. Sorting data

    输入:

    a = np.array([[4, 3, 5], [1, 2, 1]])
    b = np.sort(a, axis=1)
    b

    输出:

    array([[3, 4, 5],
           [1, 1, 2]])

    输入:argsort函数,返回值是序列的顺序索引

    a = np.array([4, 3, 1, 2])
    j = np.argsort(a)
    print(j)
    print(a[j])

    输出:

    [2 3 1 0]
    [1 2 3 4]
  • 相关阅读:
    数组作为方法参数
    定义一个方法,根据商品总价,计算出对应的折扣并输出。折扣信息如下
    Cocos2d入门--1--初涉相关属性或代码
    JSP基础--JAVA遇见HTML
    查找算法--折半查找
    排序算法--冒泡排序
    排序算法--简单选择排序
    C语言的传值与传址调用
    学习C语言的数组
    如何获取QQ里的截图app?
  • 原文地址:https://www.cnblogs.com/huanjing/p/8627086.html
Copyright © 2011-2022 走看看