zoukankan      html  css  js  c++  java
  • 【转】Redis 实现限流的三种方式

    文章来源:微信公众号  JAVA技术之家

      面对越来越多的高并发场景,限流显示的尤为重要。

      当然,限流有许多种实现的方式,Redis具有很强大的功能,我用Redis实践了三种的实现方式,可以较为简单的实现其方式。Redis不仅仅是可以做限流,还可以做数据统计,附近的人等功能,这些可能会后续写到。

     

    第1种:基于Redis的setnx的操作

      我们在使用Redis的分布式锁的时候,大家都知道是依靠了setnx的指令,在CAS(Compare and swap)的操作的时候,同时给指定的key设置了过期时间(expire),我们在限流的主要目的就是为了在单位时间内,有且仅有N数量的请求能够访问我的代码程序。所以依靠setnx可以很轻松的做到这方面的功能。

      比如我们需要在10秒内限定20个请求,那么我们在setnx的时候可以设置过期时间10,当请求的setnx数量达到20时候即达到了限流效果。代码比较简单就不做展示了。

      具体的setnx用法可以参照我另一篇博客  RedisTemplate下Redis分布式锁引发的系列问题

      当然这种做法的弊端是很多的,比如当统计1-10秒的时候,无法统计2-11秒之内,如果需要统计N秒内的M个请求,那么我们的Redis中需要保持N个key等等问题。

     

    第2种:基于Redis的数据结构zset

      其实限流涉及的最主要的就是滑动窗口,上面也提到1-10怎么变成2-11。其实也就是起始值和末端值都各+1即可。

      而我们如果用Redis的list数据结构可以轻而易举的实现该功能。

      我们可以将请求打造成一个zset数组,当每一次请求进来的时候,value保持唯一,可以用UUID生成,而score可以用当前时间戳表示,因为score我们可以用来计算当前时间戳之内有多少的请求数量。而zset数据结构也提供了range方法让我们可以很轻易的获取到2个时间戳内有多少请求

    public Response limitFlow(){
        Long currentTime = new Date().getTime();
        System.out.println(currentTime);
        if(redisTemplate.hasKey("limit")) {
            Integer count = redisTemplate.opsForZSet().rangeByScore("limit", currentTime -  intervalTime, currentTime).size();        // intervalTime是限流的时间 
            System.out.println(count);
            if (count != null && count > 5) {
                return Response.ok("每分钟最多只能访问5次");
            }
        }
        redisTemplate.opsForZSet().add("limit",UUID.randomUUID().toString(),currentTime);
        return Response.ok("访问成功");
    }

      通过上述代码可以做到滑动窗口的效果,并且能保证每N秒内至多M个请求,缺点就是zset的数据结构会越来越大。实现方式相对也是比较简单的。

    第3种:基于Redis的令牌桶算法

      提到限流就不得不提到令牌桶算法了。

      令牌桶算法提及到输入速率和输出速率,当输出速率大于输入速率,那么就是超出流量限制了。

      也就是说我们每访问一次请求的时候,可以从Redis中获取一个令牌,如果拿到令牌了,那就说明没超出限制,而如果拿不到,则结果相反。

      依靠上述的思想,我们可以结合Redis的List数据结构很轻易的做到这样的代码,只是简单实现。

      依靠List的leftPop来获取令牌。

    // 输出令牌
    public Response limitFlow2(Long id){
        Object result = redisTemplate.opsForList().leftPop("limit_list");
        if(result == null){
            return Response.ok("当前令牌桶中无令牌");
        }
        return Response.ok(articleDescription2);
    }

      再依靠Java的定时任务,定时往List中rightPush令牌,当然令牌也需要唯一性,所以我这里还是用UUID进行了生成

    // 10S的速率往令牌桶中添加UUID,只为保证唯一性
    @Scheduled(fixedDelay = 10_000,initialDelay = 0)
    public void setIntervalTimeTask(){
        redisTemplate.opsForList().rightPush("limit_list",UUID.randomUUID().toString());
    }

      综上,代码实现起始都不是很难,针对这些限流方式我们可以在AOP或者filter中加入以上代码,用来做到接口的限流,最终保护你的网站。

      Redis其实还有很多其他的用处,他的作用不仅仅是缓存,分布式锁的作用。他的数据结构也不仅仅是只有String,Hash,List,Set,Zset。有兴趣的可以后续了解下他的GeoHash算法;BitMap,HLL以及布隆过滤器数据(Redis4.0之后加入,可以用Docker直接安装redislabs/rebloom)结构。

     

  • 相关阅读:
    JAVA文件夹上传解决方案
    PHP文件夹上传解决方案
    JSP文件夹上传解决方案
    Web文件夹上传解决方案
    SpringCloud大文件上传解决方案
    SpringBoot大文件上传解决方案
    SpringMVC大文件上传解决方案
    局域网大文件上传解决方案
    香烟过滤嘴模型
    hdu 1010 Tempter of the Bone 奇偶剪枝
  • 原文地址:https://www.cnblogs.com/huanshilang/p/15587531.html
Copyright © 2011-2022 走看看