zoukankan      html  css  js  c++  java
  • 深入理解 Android ANR 触发原理以及信息收集过程

    一、概述

    作为 Android 开发者,相信大家都遇到过 ANR。那么为什么会出现 ANR 呢,ANR 之后系统都做了啥。文章将对这个问题详细解说。

    ANR(Application Not responding),是指应用程序未响应,Android系统对于一些事件需要在一定的时间范围内完成,如果超过预定时间能未能得到有效响应或者响应时间过长,都会造成ANR。一般地,这时往往会弹出一个提示框,告知用户当前xxx未响应,用户可选择继续等待或者Force Close。

    那么哪些场景会造成ANR呢?

    • Service Timeout:比如前台服务在20s内未执行完成;

    • BroadcastQueue Timeout:比如前台广播在10s内未执行完成

    • ContentProvider Timeout:内容提供者,在publish过超时10s;

    • InputDispatching Timeout: 输入事件分发超时5s,包括按键和触摸事件。

    触发ANR的过程可分为三个步骤: 埋炸弹, 拆炸弹, 引爆炸弹。

    埋炸弹可以理解为发送了一个延迟触发的消息(炸弹);

    拆炸弹可以理解为将这个延迟消息(炸弹)取消了,也就不会触发了;

    引爆炸弹可以理解为延迟时间已达,开始处理延迟消息(炸弹引爆了)。

    二、Service

    先附上一张 service 启动流程图:

     

    Service Timeout是位于”ActivityManager”线程中的AMS.MainHandler收到SERVICE_TIMEOUT_MSG消息时触发。

    对于Service有两类:

    • 对于前台服务,则超时为SERVICE_TIMEOUT = 20s;
    • 对于后台服务,则超时为SERVICE_BACKGROUND_TIMEOUT = 200s

    由变量ProcessRecord.execServicesFg来决定是否前台启动。

    2.1 埋炸弹

    其中在Service进程attach到system_server进程的过程中会调用realStartServiceLocked()方法来埋下炸弹.

    首先咱们先看 service 的启动中一个方法 realStartServiceLocked:

    // ActiveServices.java
    private final void realStartServiceLocked(ServiceRecord r, ProcessRecord app, boolean execInFg) throws RemoteException {
        ...
        //发送delay消息(SERVICE_TIMEOUT_MSG)
        bumpServiceExecutingLocked(r, execInFg, "create");
        try {
            ...
            //最终执行服务的onCreate()方法
            app.thread.scheduleCreateService(r, r.serviceInfo,
                    mAm.compatibilityInfoForPackageLocked(r.serviceInfo.applicationInfo),
                    app.repProcState);
        } catch (DeadObjectException e) {
            mAm.appDiedLocked(app);
            throw e;
        } finally {
            ...
        }
    }
    
    private final void bumpServiceExecutingLocked(ServiceRecord r, boolean fg, String why) {
        ... 
        scheduleServiceTimeoutLocked(r.app);
    }
    
    void scheduleServiceTimeoutLocked(ProcessRecord proc) {
        if (proc.executingServices.size() == 0 || proc.thread == null) {
            return;
        }
        long now = SystemClock.uptimeMillis();
        Message msg = mAm.mHandler.obtainMessage(
                ActivityManagerService.SERVICE_TIMEOUT_MSG);
        msg.obj = proc;
        
        //当超时后仍没有remove该SERVICE_TIMEOUT_MSG消息,则执行service Timeout流程
        mAm.mHandler.sendMessageAtTime(msg,
            proc.execServicesFg ? (now+SERVICE_TIMEOUT) : (now+ SERVICE_BACKGROUND_TIMEOUT));
    } 

    在 AS.realStartServiceLocked 启动 service 方法中,发送了了一个延时的关于超时的消息,这里又对 service 进行了前后台的区分:

        // How long we wait for a service to finish executing. 20s
        static final int SERVICE_TIMEOUT = 20*1000;
    
        // How long we wait for a service to finish executing. 200s
        static final int SERVICE_BACKGROUND_TIMEOUT = SERVICE_TIMEOUT * 10;

    2.2 拆炸弹

    AS.realStartServiceLocked() 调用的过程会埋下一颗炸弹, 超时没有启动完成则会爆炸. 那么什么时候会拆除这颗炸弹的引线呢? 经过Binder等层层调用进入目标进程的主线程handleCreateService()的过程.

    // ActivityThread,这里多说一句, ApplicationThread 是其内部类
    private void handleCreateService(CreateServiceData data) {
            ...
            java.lang.ClassLoader cl = packageInfo.getClassLoader();
            Service service = (Service) cl.loadClass(data.info.name).newInstance();
            ...
    
            try {
                //创建ContextImpl对象
                ContextImpl context = ContextImpl.createAppContext(this, packageInfo);
                context.setOuterContext(service);
                //创建Application对象
                Application app = packageInfo.makeApplication(false, mInstrumentation);
                service.attach(context, this, data.info.name, data.token, app,
                        ActivityManagerNative.getDefault());
                //调用服务onCreate()方法 
                service.onCreate();
                
                // 
                ActivityManagerNative.getDefault().serviceDoneExecuting(
                        data.token, SERVICE_DONE_EXECUTING_ANON, 0, 0);
            } catch (Exception e) {
                ...
            }
        }

     在这个过程会创建目标服务对象,以及回调 onCreate() 方法, 紧接再次经过多次调用回到 system_server 来执行 serviceDoneExecuting 。

    // ActiveServices
    private void serviceDoneExecutingLocked(ServiceRecord r, boolean inDestroying, boolean finishing) {
        ...
        if (r.executeNesting <= 0) {
            if (r.app != null) {
                r.app.execServicesFg = false;
                r.app.executingServices.remove(r);
                if (r.app.executingServices.size() == 0) {
                    //当前服务所在进程中没有正在执行的service
                    mAm.mHandler.removeMessages(ActivityManagerService.SERVICE_TIMEOUT_MSG, r.app);
            ...
        }
        ...
    }
    // How long we wait for a service to finish executing.
    static final int SERVICE_TIMEOUT = 20*1000;

    该方法会在 service 启动完成后移除服务超时消息 SERVICE_TIMEOUT_MSG,时间是 20s。

    2.3 引爆炸弹

    前面介绍了埋炸弹和拆炸弹的过程, 如果在炸弹倒计时结束之前成功拆卸炸弹,那么就没有爆炸的机会, 但是世事难料. 总有些极端情况下无法即时拆除炸弹,导致炸弹爆炸, 其结果就是 App 发生 ANR. 接下来,带大家来看看炸弹爆炸的现场:

    在 system_server 进程中有一个Handler线程,当倒计时结束便会向该 Handler 线程发送一条信息SERVICE_TIMEOUT_MSG,

      // ActivityManagerService.java ::MainHandler
     final class MainHandler extends Handler {
            public MainHandler(Looper looper) {
                super(looper, null, true);
            }
    
            @Override
            public void handleMessage(Message msg) {
                switch (msg.what) {
            ......case SERVICE_TIMEOUT_MSG: {
                    mServices.serviceTimeout((ProcessRecord)msg.obj);
                } break;
         }
    }    

     当延时时间到了之后,就会对消息进行处理,下面看下具体处理逻辑:

    oid serviceTimeout(ProcessRecord proc) {
        String anrMessage = null;
    
        synchronized(mAm) {
            if (proc.executingServices.size() == 0 || proc.thread == null) {
                return;
            }
            final long now = SystemClock.uptimeMillis();
            final long maxTime =  now -
                    (proc.execServicesFg ? SERVICE_TIMEOUT : SERVICE_BACKGROUND_TIMEOUT);
            ServiceRecord timeout = null;
            long nextTime = 0;
            for (int i=proc.executingServices.size()-1; i>=0; i--) {
           // 从进程里面获取正在运行的 service ServiceRecord sr
    = proc.executingServices.valueAt(i); if (sr.executingStart < maxTime) { timeout = sr; break; } if (sr.executingStart > nextTime) { nextTime = sr.executingStart; } } if (timeout != null && mAm.mLruProcesses.contains(proc)) { Slog.w(TAG, "Timeout executing service: " + timeout); StringWriter sw = new StringWriter(); PrintWriter pw = new FastPrintWriter(sw, false, 1024); pw.println(timeout); timeout.dump(pw, " "); pw.close(); mLastAnrDump = sw.toString(); mAm.mHandler.removeCallbacks(mLastAnrDumpClearer); mAm.mHandler.postDelayed(mLastAnrDumpClearer, LAST_ANR_LIFETIME_DURATION_MSECS); anrMessage = "executing service " + timeout.shortName; } } if (anrMessage != null) { //当存在timeout的service,则执行appNotResponding mAm.appNotResponding(proc, null, null, false, anrMessage); } }

    其中anrMessage的内容为”executing service [发送超时serviceRecord信息]”;

    2.4 前台与后台服务的区别

    系统对前台服务启动的超时为20s,而后台服务超时为200s,那么系统是如何区别前台还是后台服务呢?来看看ActiveServices的核心逻辑:

    ComponentName startServiceLocked(...) {
        final boolean callerFg;
        if (caller != null) {
            final ProcessRecord callerApp = mAm.getRecordForAppLocked(caller);
            callerFg = callerApp.setSchedGroup != ProcessList.SCHED_GROUP_BACKGROUND;
        } else {
            callerFg = true;
        }
        ...
        ComponentName cmp = startServiceInnerLocked(smap, service, r, callerFg, addToStarting);
        return cmp;
    } 

    在startService过程根据发起方进程 callerApp 所属的进程调度组来决定被启动的服务是属于前台还是后台。当发起方进程不等于ProcessList.SCHED_GROUP_BACKGROUND (后台进程组) 则认为是前台服务,否则为后台服务,并标记在ServiceRecord的成员变量createdFromFg。

    什么进程属于SCHED_GROUP_BACKGROUND调度组呢?进程调度组大体可分为TOP、前台、后台,进程优先级(Adj)和进程调度组(SCHED_GROUP)算法较为复杂,其对应关系可粗略理解为Adj等于0的进程属于Top进程组,Adj等于100或者200的进程属于前台进程组,Adj大于200的进程属于后台进程组。关于Adj的含义见下表,简单来说就是Adj>200的进程对用户来说基本是无感知,主要是做一些后台工作,故后台服务拥有更长的超时阈值,同时后台服务属于后台进程调度组,相比前台服务属于前台进程调度组,分配更少的CPU时间片。

    前台服务准确来说,是指由处于前台进程调度组的进程发起的服务。这跟常说的fg-service服务有所不同,fg-service是指挂有前台通知的服务。

    需要注意的问题,如果日志中出现 Reason: executing service com.example.baidu/.AnrService 也不一定是因为服务本身耗时导致,比如启动服务后,执行了耗时的操作,启动服务时onCreate函数或者 onStartCommand函数不能执行,超时后,仍然会造成anr

    三、BroadcastReceiver

    BroadcastReceiver Timeout 是位于”ActivityManager”线程中的BroadcastQueue.BroadcastHandler收到BROADCAST_TIMEOUT_MSG消息时触发。

    对于广播队列有两个: foreground 队列和 background 队列:

    • 对于前台广播,则超时为 BROADCAST_FG_TIMEOUT = 10s;
    • 对于后台广播,则超时为 BROADCAST_BG_TIMEOUT = 60s

    3.1 埋炸弹

    先看发送广播的逻辑:

    // ActivityManagerService.java]
    public final int broadcastIntent(IApplicationThread caller,
                Intent intent, String resolvedType, IIntentReceiver resultTo,
                int resultCode, String resultData, Bundle resultExtras,
                String[] requiredPermissions, int appOp, Bundle bOptions,
                boolean serialized, boolean sticky, int userId) {
            enforceNotIsolatedCaller("broadcastIntent");
            synchronized(this) {
           // 验证广播的有效性 intent
    = verifyBroadcastLocked(intent);        // 获取发送广播的进程信息 final ProcessRecord callerApp = getRecordForAppLocked(caller); final int callingPid = Binder.getCallingPid(); final int callingUid = Binder.getCallingUid(); final long origId = Binder.clearCallingIdentity(); try { return broadcastIntentLocked(callerApp, callerApp != null ? callerApp.info.packageName : null, intent, resolvedType, resultTo, resultCode, resultData, resultExtras, requiredPermissions, appOp, bOptions, serialized, sticky, callingPid, callingUid, callingUid, callingPid, userId); } finally { Binder.restoreCallingIdentity(origId); } } }

    broadcastIntent()方法有两个布尔参数 serialized 和 sticky 来共同决定是普通广播,有序广播,还是 Sticky 广播,参数如下:

    类型serializedsticky
    sendBroadcast false false
    sendOrderedBroadcast true false
    sendStickyBroadcast false true

    说完发送广播,接下去就要讲讲讲收广播的操作了。

    首先广播发出去之后,肯定会存在一个队列里面来进行处理。

    // ActivityManagerService
      public ActivityManagerService(Context systemContext, ActivityTaskManagerService atm) {
        // ...... 创建了三个队列来保存不同的广播类型
            mFgBroadcastQueue = new BroadcastQueue(this, mHandler,
                    "foreground", foreConstants, false);
            mBgBroadcastQueue = new BroadcastQueue(this, mHandler,
                    "background", backConstants, true);
            mOffloadBroadcastQueue = new BroadcastQueue(this, mHandler,
                    "offload", offloadConstants, true);
            mBroadcastQueues[0] = mFgBroadcastQueue;
            mBroadcastQueues[1] = mBgBroadcastQueue;
            mBroadcastQueues[2] = mOffloadBroadcastQueue;
        
    }

    在 ams 的构造函数里面,可以发现这里对广播进行了分类,分别有前台广播,后台广播,Offload 广播,并用一个新的数组将这三个队列放在一起。这里的 handler 是 MainHandler,也就是主线程的。传入是为了获取其 looper 。

        BroadcastQueue(ActivityManagerService service, Handler handler,
                String name, BroadcastConstants constants, boolean allowDelayBehindServices) {
            mService = service;
         // 广播的 handler 主要是获取到 ams 中 handler looper 来创建的 mHandler
    = new BroadcastHandler(handler.getLooper()); mQueueName = name; mDelayBehindServices = allowDelayBehindServices; mConstants = constants; mDispatcher = new BroadcastDispatcher(this, mConstants, mHandler, mService); }

    下面就说下处理广播的逻辑:

        private final class BroadcastHandler extends Handler {
            public BroadcastHandler(Looper looper) {
                super(looper, null, true);
            }
    
            @Override
            public void handleMessage(Message msg) {
                switch (msg.what) {
                    case BROADCAST_INTENT_MSG: {
                        if (DEBUG_BROADCAST) Slog.v(
                                TAG_BROADCAST, "Received BROADCAST_INTENT_MSG ["
                                + mQueueName + "]");
                // 开始处理广播 processNextBroadcast(
    true); } break; case BROADCAST_TIMEOUT_MSG: { synchronized (mService) { broadcastTimeoutLocked(true); } } break; } } }

    可以发现这里调用的是  processNextBroadcast 方法来处理广播。

    final void processNextBroadcast(boolean fromMsg) {
        synchronized(mService) {
            //part1: 处理并行广播
            while (mParallelBroadcasts.size() > 0) {
                r = mParallelBroadcasts.remove(0);
                r.dispatchTime = SystemClock.uptimeMillis();
                r.dispatchClockTime = System.currentTimeMillis();
                final int N = r.receivers.size();
                for (int i=0; i<N; i++) {
                    Object target = r.receivers.get(i);
                    //分发广播给已注册的receiver 
                    deliverToRegisteredReceiverLocked(r, (BroadcastFilter)target, false);
                }
                addBroadcastToHistoryLocked(r);//将广播添加历史统计
            }
    
            //part2: 处理当前有序广播
            do {
                if (mOrderedBroadcasts.size() == 0) {
                    mService.scheduleAppGcsLocked(); //没有更多的广播等待处理
                    if (looped) {
                        mService.updateOomAdjLocked();
                    }
                    return;
                }
                r = mOrderedBroadcasts.get(0); //获取串行广播的第一个广播
                boolean forceReceive = false;
                int numReceivers = (r.receivers != null) ? r.receivers.size() : 0;
                if (mService.mProcessesReady && r.dispatchTime > 0) {
                    long now = SystemClock.uptimeMillis();
                    if ((numReceivers > 0) && (now > r.dispatchTime + (2*mTimeoutPeriod*numReceivers))) {
                        broadcastTimeoutLocked(false); //当广播处理时间超时,则强制结束这条广播
                    }
                }
                ...
                if (r.receivers == null || r.nextReceiver >= numReceivers
                        || r.resultAbort || forceReceive) {
                    if (r.resultTo != null) {
                        //处理广播消息消息,调用到onReceive()
                        performReceiveLocked(r.callerApp, r.resultTo,
                            new Intent(r.intent), r.resultCode,
                            r.resultData, r.resultExtras, false, false, r.userId);
                    }
    
                    cancelBroadcastTimeoutLocked(); //取消BROADCAST_TIMEOUT_MSG消息
                    addBroadcastToHistoryLocked(r);
                    mOrderedBroadcasts.remove(0);
                    continue;
                }
            } while (r == null);
    
            //part3: 获取下一个receiver
            r.receiverTime = SystemClock.uptimeMillis();
            if (recIdx == 0) {
                r.dispatchTime = r.receiverTime;
                r.dispatchClockTime = System.currentTimeMillis();
            }
            if (!mPendingBroadcastTimeoutMessage) {
                long timeoutTime = r.receiverTime + mTimeoutPeriod;
                setBroadcastTimeoutLocked(timeoutTime); //设置广播超时延时消息
            }
    
            //part4: 处理下条有序广播
            ProcessRecord app = mService.getProcessRecordLocked(targetProcess,
                    info.activityInfo.applicationInfo.uid, false);
            if (app != null && app.thread != null) {
                app.addPackage(info.activityInfo.packageName,
                        info.activityInfo.applicationInfo.versionCode, mService.mProcessStats);
                processCurBroadcastLocked(r, app); //[处理串行广播]
                return;
                ...
            }
    
            //该receiver所对应的进程尚未启动,则创建该进程
            if ((r.curApp=mService.startProcessLocked(targetProcess,
                    info.activityInfo.applicationInfo, true,
                    r.intent.getFlags() | Intent.FLAG_FROM_BACKGROUND,
                    "broadcast", r.curComponent,
                    (r.intent.getFlags()&Intent.FLAG_RECEIVER_BOOT_UPGRADE) != 0, false, false))
                            == null) {
                ...
                return;
            }
        }
    }

    对于广播超时处理时机:

    1. 首先在part3的过程中setBroadcastTimeoutLocked(timeoutTime) 设置超时广播消息;

    2. 然后在part2根据广播处理情况来处理:

      • 当广播接收者等待时间过长,则调用 broadcastTimeoutLocked(false);也就是引爆炸弹

      • 当执行完广播,则调用 cancelBroadcastTimeoutLocked; 也就是拆除炸弹

    // BroadcastQueue
    final void setBroadcastTimeoutLocked(long timeoutTime) {
        if (! mPendingBroadcastTimeoutMessage) {
            Message msg = mHandler.obtainMessage(BROADCAST_TIMEOUT_MSG, this);
            mHandler.sendMessageAtTime(msg, timeoutTime);
            mPendingBroadcastTimeoutMessage = true;
        }
    }

    设置定时广播 BROADCAST_TIMEOUT_MSG,即当前往后推 mTimeoutPeriod 时间广播还没处理完毕,则进入广播超时流程。

        // BroadcastConstants.java 
       private static final long DEFAULT_TIMEOUT = 10_000; // Timeout period for this broadcast queue public long TIMEOUT = DEFAULT_TIMEOUT; // Unspecified fields retain their current value rather than revert to default 超时时间还是可以设置的 TIMEOUT = mParser.getLong(KEY_TIMEOUT, TIMEOUT);

     来看下具体时间的设置,超时设置的是 10 s。 

    3.2 拆炸弹

    broadcast跟service超时机制大抵相同:

    // 取消超时    
    final void cancelBroadcastTimeoutLocked() {
            if (mPendingBroadcastTimeoutMessage) {
                // 移除消息
                mHandler.removeMessages(BROADCAST_TIMEOUT_MSG, this);
                mPendingBroadcastTimeoutMessage = false;
            }
        }

    移除广播超时消息 BROADCAST_TIMEOUT_MSG,这样就把诈弹拆除了。

     3.3 引爆炸弹

    下面看下引爆炸弹的逻辑,前面我们已经介绍了 BroadcastQueue 中的 handler 的实现了,下面直接看下超时的处理逻辑:

    //fromMsg = true
    final void broadcastTimeoutLocked(boolean fromMsg) {
        if (fromMsg) {
            mPendingBroadcastTimeoutMessage = false;
        }
    
        if (mOrderedBroadcasts.size() == 0) {
            return;
        }
    
        long now = SystemClock.uptimeMillis();
        BroadcastRecord r = mOrderedBroadcasts.get(0);
        if (fromMsg) {
            if (mService.mDidDexOpt) {
                mService.mDidDexOpt = false;
                long timeoutTime = SystemClock.uptimeMillis() + mTimeoutPeriod;
                setBroadcastTimeoutLocked(timeoutTime);
                return;
            }
            
            if (!mService.mProcessesReady) {
                return; //当系统还没有准备就绪时,广播处理流程中不存在广播超时
            }
    
            long timeoutTime = r.receiverTime + mTimeoutPeriod;
            if (timeoutTime > now) {
                //如果当前正在执行的receiver没有超时,则重新设置广播超时
                setBroadcastTimeoutLocked(timeoutTime);
                return;
            }
        }
    
        BroadcastRecord br = mOrderedBroadcasts.get(0);
        if (br.state == BroadcastRecord.WAITING_SERVICES) {
            //广播已经处理完成,但需要等待已启动service执行完成。当等待足够时间,则处理下一条广播。
            br.curComponent = null;
            br.state = BroadcastRecord.IDLE;
            processNextBroadcast(false);
            return;
        }
    
        r.receiverTime = now;
        //当前BroadcastRecord的anr次数执行加1操作
        r.anrCount++;
    
        if (r.nextReceiver <= 0) {
            return;
        }
        ...
        
        Object curReceiver = r.receivers.get(r.nextReceiver-1);
        //查询App进程
        if (curReceiver instanceof BroadcastFilter) {
            BroadcastFilter bf = (BroadcastFilter)curReceiver;
            if (bf.receiverList.pid != 0
                    && bf.receiverList.pid != ActivityManagerService.MY_PID) {
                synchronized (mService.mPidsSelfLocked) {
                    app = mService.mPidsSelfLocked.get(
                            bf.receiverList.pid);
                }
            }
        } else {
            app = r.curApp;
        }
    
        if (app != null) {
            anrMessage = "Broadcast of " + r.intent.toString();
        }
    
        if (mPendingBroadcast == r) {
            mPendingBroadcast = null;
        }
    
        //继续移动到下一个广播接收者
        finishReceiverLocked(r, r.resultCode, r.resultData,
                r.resultExtras, r.resultAbort, false);
        scheduleBroadcastsLocked();
    
        if (anrMessage != null) {
            // 发送 anr 消息,带上了 anr 进程信息和 anr 消息
            mHandler.post(new AppNotResponding(app, anrMessage));
        }
    }
    1. mOrderedBroadcasts已处理完成,则不会anr;

    2. 正在执行dexopt,则不会anr;

    3. 系统还没有进入ready状态(mProcessesReady=false),则不会anr;

    4. 如果当前正在执行的receiver没有超时,则重新设置广播超时,不会anr;

    来看下  AppNotResponding 实现:

        private final class AppNotResponding implements Runnable {
            private final ProcessRecord mApp;
            private final String mAnnotation;
    
            public AppNotResponding(ProcessRecord app, String annotation) {
                mApp = app;
                mAnnotation = annotation;
            }
    
            @Override
            public void run() {
                mApp.appNotResponding(null, null, null, null, false, mAnnotation);
            }
        }

    最终会让 ProcessRecord 来处理 anr,并且其内部持有 ActivityManagerService 实例。

    3.4 前台与后台广播超时

    前台广播超时为10s,后台广播超时为60s,那么如何区分前台和后台广播呢?来看看AMS的核心逻辑:

    BroadcastQueue broadcastQueueForIntent(Intent intent) {
        final boolean isFg = (intent.getFlags() & Intent.FLAG_RECEIVER_FOREGROUND) != 0;
        return (isFg) ? mFgBroadcastQueue : mBgBroadcastQueue;
    }
    
    mFgBroadcastQueue = new BroadcastQueue(this, mHandler,
            "foreground", BROADCAST_FG_TIMEOUT, false);
    mBgBroadcastQueue = new BroadcastQueue(this, mHandler,
            "background", BROADCAST_BG_TIMEOUT, true);

    根据发送广播sendBroadcast(Intent intent)中的intent的flags是否包含 FLAG_RECEIVER_FOREGROUND 来决定把该广播是放入前台广播队列或者后台广播队列,前台广播队列的超时为10s,后台广播队列的超时为60s,默认情况下广播是放入后台广播队列,除非指明加上 FLAG_RECEIVER_FOREGROUND 标识。

    后台广播比前台广播拥有更长的超时阈值,同时在广播分发过程遇到后台service的启动(mDelayBehindServices)会延迟分发广播,等待service的完成,因为等待service而导致的广播ANR会被忽略掉;后台广播属于后台进程调度组,而前台广播属于前台进程调度组。简而言之,后台广播更不容易发生ANR,同时执行的速度也会更慢。

    另外,只有串行处理的广播才有超时机制,因为接收者是串行处理的,前一个receiver处理慢,会影响后一个receiver;并行广播通过一个循环一次性向所有的receiver分发广播事件,所以不存在彼此影响的问题,则没有广播超时。

    前台广播准确来说,是指位于前台广播队列的广播

    四 ContentProvider

    ContentProvider Timeout是位于”ActivityManager”线程中的AMS.MainHandler收到CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG消息时触发。

    ContentProvider 超时为CONTENT_PROVIDER_PUBLISH_TIMEOUT = 10s. 这个跟前面的Service和BroadcastQueue完全不同, 由 Provider 进程启动过程相关.

    4.1 埋炸弹

    埋炸弹的过程其实是在进程创建的过程,进程创建后会调用attachApplicationLocked() 进入system_server进程。

    // ActivityManagerService
    private final boolean attachApplicationLocked(IApplicationThread thread, int pid) {
        ProcessRecord app;
        if (pid != MY_PID && pid >= 0) {
            synchronized (mPidsSelfLocked) {
                app = mPidsSelfLocked.get(pid); // 根据pid获取ProcessRecord
            }
        } 
        ...
        
        //系统处于ready状态或者该app为FLAG_PERSISTENT进程则为true
        boolean normalMode = mProcessesReady || isAllowedWhileBooting(app.info);
        List<ProviderInfo> providers = normalMode ? generateApplicationProvidersLocked(app) : null;
    
        //app进程存在正在启动中的provider,则超时10s后发送CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG消息
        if (providers != null && checkAppInLaunchingProvidersLocked(app)) {
            Message msg = mHandler.obtainMessage(CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG);
            msg.obj = app;
            mHandler.sendMessageDelayed(msg, CONTENT_PROVIDER_PUBLISH_TIMEOUT);
        }
        
        thread.bindApplication(...);
        ...
    }
    // 10s
    static
    final int CONTENT_PROVIDER_PUBLISH_TIMEOUT = 10*1000;

    10s 之后引爆该炸弹.

    4.2 拆炸弹

    当 provider 成功 publish 之后,便会拆除该炸弹.

    public final void publishContentProviders(IApplicationThread caller, List<ContentProviderHolder> providers) {
       ...
       
       synchronized (this) {
           final ProcessRecord r = getRecordForAppLocked(caller);
           
           final int N = providers.size();
           for (int i = 0; i < N; i++) {
               ContentProviderHolder src = providers.get(i);
               ...
               ContentProviderRecord dst = r.pubProviders.get(src.info.name);
               if (dst != null) {
                   ComponentName comp = new ComponentName(dst.info.packageName, dst.info.name);
                   
                   mProviderMap.putProviderByClass(comp, dst); //将该provider添加到mProviderMap
                   String names[] = dst.info.authority.split(";");
                   for (int j = 0; j < names.length; j++) {
                       mProviderMap.putProviderByName(names[j], dst);
                   }
    
                   int launchingCount = mLaunchingProviders.size();
                   int j;
                   boolean wasInLaunchingProviders = false;
                   for (j = 0; j < launchingCount; j++) {
                       if (mLaunchingProviders.get(j) == dst) {
                           //将该provider移除mLaunchingProviders队列
                           mLaunchingProviders.remove(j);
                           wasInLaunchingProviders = true;
                           j--;
                           launchingCount--;
                       }
                   }
                   //成功pubish则移除该消息
                   if (wasInLaunchingProviders) {
                       mHandler.removeMessages(CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG, r);
                   }
                   synchronized (dst) {
                       dst.provider = src.provider;
                       dst.proc = r;
                       //唤醒客户端的wait等待方法
                       dst.notifyAll();
                   }
                   ...
               }
           }
       }    
    }

    4.3 引爆炸弹

    在system_server进程中有一个Handler线程, 名叫”ActivityManager”.当倒计时结束便会向该Handler线程发送 一条信息CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG. MainHandler 是 AMS 的内部类。 

    final class MainHandler extends Handler {
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG: {
                    ...
                    ProcessRecord app = (ProcessRecord)msg.obj;
                    synchronized (ActivityManagerService.this) {
                        //【见小节4.3.2】
                        processContentProviderPublishTimedOutLocked(app);
                    }
                } break;
                ...
            }
            ...
        }
    }
    
    private final void processContentProviderPublishTimedOutLocked(ProcessRecord app) {
        //[见4.3.3]
        cleanupAppInLaunchingProvidersLocked(app, true); 
        //[见小节4.3.4]
        removeProcessLocked(app, false, true, "timeout publishing content providers");
    }
    
    
    boolean cleanupAppInLaunchingProvidersLocked(ProcessRecord app, boolean alwaysBad) {
        boolean restart = false;
        for (int i = mLaunchingProviders.size() - 1; i >= 0; i--) {
            ContentProviderRecord cpr = mLaunchingProviders.get(i);
            if (cpr.launchingApp == app) {
                if (!alwaysBad && !app.bad && cpr.hasConnectionOrHandle()) {
                    restart = true;
                } else {
                    //移除死亡的provider
                    removeDyingProviderLocked(app, cpr, true);
                }
            }
        }
        return restart;
    }

    removeDyingProviderLocked()的功能跟进程的存活息息相关:详见ContentProvider引用计数 []小节4.5]

    • 对于stable类型的provider(即conn.stableCount > 0),则会杀掉所有跟该provider建立stable连接的非persistent进程.

    • 对于unstable类的provider(即conn.unstableCount > 0),并不会导致client进程被级联所杀.

    五、input超时机制

    input的超时检测机制跟service、broadcast、provider截然不同,为了更好的理解input过程先来介绍两个重要线程的相关工作:

    • InputReader线程负责通过EventHub(监听目录/dev/input)读取输入事件,一旦监听到输入事件则放入到InputDispatcher的mInBoundQueue队列,并通知其处理该事件;

    • InputDispatcher线程负责将接收到的输入事件分发给目标应用窗口,分发过程使用到3个事件队列:

      • mInBoundQueue用于记录InputReader发送过来的输入事件;

      • outBoundQueue用于记录即将分发给目标应用窗口的输入事件;

      • waitQueue用于记录已分发给目标应用,且应用尚未处理完成的输入事件;

    input的超时机制并非时间到了一定就会爆炸,而是处理后续上报事件的过程才会去检测是否该爆炸,所以更像是扫雷的过程,具体如下图所示。

    1. InputReader线程通过EventHub监听底层上报的输入事件,一旦收到输入事件则将其放至mInBoundQueue队列,并唤醒InputDispatcher线程

    2. InputDispatcher开始分发输入事件,设置埋雷的起点时间。先检测是否有正在处理的事件(mPendingEvent),如果没有则取出mInBoundQueue队头的事件,并将其赋值给mPendingEvent,且重置ANR的timeout;否则不会从mInBoundQueue中取出事件,也不会重置timeout。然后检查窗口是否就绪(checkWindowReadyForMoreInputLocked),满足以下任一情况,则会进入扫雷状态(检测前一个正在处理的事件是否超时),终止本轮事件分发,否则继续执行步骤3。当应用窗口准备就绪,则将mPendingEvent转移到outBoundQueue队列

      • 对于按键类型的输入事件,则outboundQueue或者waitQueue不为空,

      • 对于非按键的输入事件,则waitQueue不为空,且等待队头时间超时500ms

    3. 当outBoundQueue不为空,且应用管道对端连接状态正常,则将数据从outboundQueue中取出事件,放入waitQueue队列

    4. InputDispatcher通过socket告知目标应用所在进程可以准备开始干活

    5. App在初始化时默认已创建跟中控系统双向通信的socketpair,此时App的包工头(main线程)收到输入事件后,会层层转发到目标窗口来处理

    6. 包工头完成工作后,会通过socket向中控系统汇报工作完成,则中控系统会将该事件从waitQueue队列中移除。

    input超时机制为什么是扫雷,而非定时爆炸呢?是由于对于input来说即便某次事件执行时间超过timeout时长,只要用户后续在没有再生成输入事件,则不会触发ANR。 这里的扫雷是指当前输入系统中正在处理着某个耗时事件的前提下,后续的每一次input事件都会检测前一个正在处理的事件是否超时(进入扫雷状态),检测当前的时间距离上次输入事件分发时间点是否超过timeout时长。如果前一个输入事件,则会重置ANR的timeout,从而不会爆炸。

    到这里,关于 service ,广播,provider 的 anr 原因都讲清楚了。下面就看看是如何对 anr 信息进行收集的。

    六、appNotResponding处理流程

    不管是啥 anr ,最终都会调用到 ProcessRecord 的 appNotResponding 方法,下面来看看这个方法里面具体都做了啥:

    // ProcessRecord.java    
    void appNotResponding(String activityShortComponentName, ApplicationInfo aInfo,
                String parentShortComponentName, WindowProcessController parentProcess,
                boolean aboveSystem, String annotation) {
            ArrayList<Integer> firstPids = new ArrayList<>(5);
            SparseArray<Boolean> lastPids = new SparseArray<>(20);
    
            mWindowProcessController.appEarlyNotResponding(annotation, () -> kill("anr", true));
         // anr 时间,实际上发生 anr 的时候,此时收集的运行堆栈有可能并不是引起 anr 的堆栈
            long anrTime = SystemClock.uptimeMillis();
            if (isMonitorCpuUsage()) {
                mService.updateCpuStatsNow();
            }
    
            synchronized (mService) {
                // PowerManager.reboot() can block for a long time, so ignore ANRs while shutting down.  关机时发生 anr 会被忽略,因为可能会引起长时间阻塞
                if (mService.mAtmInternal.isShuttingDown()) {
                    Slog.i(TAG, "During shutdown skipping ANR: " + this + " " + annotation);
                    return;
                } else if (isNotResponding()) {
                    Slog.i(TAG, "Skipping duplicate ANR: " + this + " " + annotation);
                    return;
                } else if (isCrashing()) {
                    Slog.i(TAG, "Crashing app skipping ANR: " + this + " " + annotation);
                    return;
                } else if (killedByAm) {
                    Slog.i(TAG, "App already killed by AM skipping ANR: " + this + " " + annotation);
                    return;
                } else if (killed) {
                    Slog.i(TAG, "Skipping died app ANR: " + this + " " + annotation);
                    return;
                }
    
                // In case we come through here for the same app before completing
                // this one, mark as anring now so we will bail out.  这样可以避免重复进入
                setNotResponding(true);
     
                // Log the ANR to the event log.  记录 anr 到 eventlog
                EventLog.writeEvent(EventLogTags.AM_ANR, userId, pid, processName, info.flags,
                        annotation);
    
                // Dump thread traces as quickly as we can, starting with "interesting" processes.  将当前进程添加到 firstPids 中
                firstPids.add(pid);
    
                // Don't dump other PIDs if it's a background ANR
                if (!isSilentAnr()) {
                    int parentPid = pid;
                    if (parentProcess != null && parentProcess.getPid() > 0) {
                        parentPid = parentProcess.getPid();
                    }
                    if (parentPid != pid) firstPids.add(parentPid);
              // 将system_server进程添加到firstPids
                    if (MY_PID != pid && MY_PID != parentPid) firstPids.add(MY_PID);
    
                    for (int i = getLruProcessList().size() - 1; i >= 0; i--) {
                        ProcessRecord r = getLruProcessList().get(i);
                        if (r != null && r.thread != null) {
                            int myPid = r.pid;
                            if (myPid > 0 && myPid != pid && myPid != parentPid && myPid != MY_PID) {
                                if (r.isPersistent()) { 
                                    firstPids.add(myPid); // 将persistent进程添加到firstPids
                                    if (DEBUG_ANR) Slog.i(TAG, "Adding persistent proc: " + r);
                                } else if (r.treatLikeActivity) {
                                    firstPids.add(myPid);  // 使用了 BIND_TREAT_LIKE_ACTIVITY
                                    if (DEBUG_ANR) Slog.i(TAG, "Adding likely IME: " + r);
                                } else {
                                    lastPids.put(myPid, Boolean.TRUE);  // 其他进程添加到lastPids
                                    if (DEBUG_ANR) Slog.i(TAG, "Adding ANR proc: " + r);
                                }
                            }
                        }
                    }
                }
            }
    
            // Log the ANR to the main log.  记录 anr 到 mainlog 
            StringBuilder info = new StringBuilder();
            info.setLength(0);
            info.append("ANR in ").append(processName);
            if (activityShortComponentName != null) {
                info.append(" (").append(activityShortComponentName).append(")");
            }
            info.append("
    ");
            info.append("PID: ").append(pid).append("
    ");
            if (annotation != null) {
                info.append("Reason: ").append(annotation).append("
    ");
            }
            if (parentShortComponentName != null
                    && parentShortComponentName.equals(activityShortComponentName)) {
                info.append("Parent: ").append(parentShortComponentName).append("
    ");
            }
         // 创建 cpu tracker 对象
            ProcessCpuTracker processCpuTracker = new ProcessCpuTracker(true);
    
            // don't dump native PIDs for background ANRs unless it is the process of interest
            String[] nativeProcs = null;
            if (isSilentAnr()) {
                for (int i = 0; i < NATIVE_STACKS_OF_INTEREST.length; i++) {
                    if (NATIVE_STACKS_OF_INTEREST[i].equals(processName)) {
                        nativeProcs = new String[] { processName };
                        break;
                    }
                }
            } else {
                nativeProcs = NATIVE_STACKS_OF_INTEREST;
            }
         // 获取 native 进程
            int[] pids = nativeProcs == null ? null : Process.getPidsForCommands(nativeProcs);
            ArrayList<Integer> nativePids = null;
    
            if (pids != null) {
                nativePids = new ArrayList<>(pids.length);
                for (int i : pids) {
                    nativePids.add(i);
                }
            }
    
            // For background ANRs, don't pass the ProcessCpuTracker to
            // avoid spending 1/2 second collecting stats to rank lastPids.  收集堆栈信息
            File tracesFile = ActivityManagerService.dumpStackTraces(firstPids,
                    (isSilentAnr()) ? null : processCpuTracker, (isSilentAnr()) ? null : lastPids,
                    nativePids);
    
            String cpuInfo = null;
         // 添加 cpu 信息
    if (isMonitorCpuUsage()) { mService.updateCpuStatsNow(); synchronized (mService.mProcessCpuTracker) { cpuInfo = mService.mProcessCpuTracker.printCurrentState(anrTime); } info.append(processCpuTracker.printCurrentLoad()); info.append(cpuInfo); } info.append(processCpuTracker.printCurrentState(anrTime)); Slog.e(TAG, info.toString()); if (tracesFile == null) { // There is no trace file, so dump (only) the alleged culprit's threads to the log Process.sendSignal(pid, Process.SIGNAL_QUIT); } StatsLog.write(StatsLog.ANR_OCCURRED, uid, processName, activityShortComponentName == null ? "unknown": activityShortComponentName, annotation, (this.info != null) ? (this.info.isInstantApp() ? StatsLog.ANROCCURRED__IS_INSTANT_APP__TRUE : StatsLog.ANROCCURRED__IS_INSTANT_APP__FALSE) : StatsLog.ANROCCURRED__IS_INSTANT_APP__UNAVAILABLE, isInterestingToUserLocked() ? StatsLog.ANROCCURRED__FOREGROUND_STATE__FOREGROUND : StatsLog.ANROCCURRED__FOREGROUND_STATE__BACKGROUND, getProcessClassEnum(), (this.info != null) ? this.info.packageName : ""); final ProcessRecord parentPr = parentProcess != null ? (ProcessRecord) parentProcess.mOwner : null;
        // 将traces文件 和 CPU使用率信息保存到dropbox,即data/system/dropbox目录 mService.addErrorToDropBox(
    "anr", this, processName, activityShortComponentName, parentShortComponentName, parentPr, annotation, cpuInfo, tracesFile, null); if (mWindowProcessController.appNotResponding(info.toString(), () -> kill("anr", true), () -> { synchronized (mService) { mService.mServices.scheduleServiceTimeoutLocked(this); } })) { return; } synchronized (mService) { // mBatteryStatsService can be null if the AMS is constructed with injector only. This // will only happen in tests. if (mService.mBatteryStatsService != null) { mService.mBatteryStatsService.noteProcessAnr(processName, uid); }        // 杀死后台 anr 的进程 if (isSilentAnr() && !isDebugging()) {
    kill(
    "bg anr", true); return; } // Set the app's notResponding state, and look up the errorReportReceiver makeAppNotRespondingLocked(activityShortComponentName, annotation != null ? "ANR " + annotation : "ANR", info.toString()); // mUiHandler can be null if the AMS is constructed with injector only. This will only // happen in tests. if (mService.mUiHandler != null) { // Bring up the infamous App Not Responding dialog Message msg = Message.obtain(); msg.what = ActivityManagerService.SHOW_NOT_RESPONDING_UI_MSG; msg.obj = new AppNotRespondingDialog.Data(this, aInfo, aboveSystem);          // 发送 anr 弹窗信息 mService.mUiHandler.sendMessage(msg); } } }

    /**
    * Unless configured otherwise, swallow ANRs in background processes & kill the process.
    * Non-private access is for tests only. 如果是后台 ANR 会被吞噬,不会提示 anr,
    */
    @VisibleForTesting
    boolean isSilentAnr() {
    return !getShowBackground() && !isInterestingForBackgroundTraces();
    }

    当发生ANR时, 会按顺序依次执行:

    1. 输出ANR Reason信息到EventLog. 也就是说ANR触发的时间点最接近的就是EventLog中输出的am_anr信息;

    2. 收集并输出重要进程列表中的各个线程的traces信息,该方法较耗时; 【见小节2】

    3. 输出当前各个进程的CPU使用情况以及CPU负载情况;

    4. 将traces文件和 CPU使用情况信息保存到dropbox,即data/system/dropbox目录

    5. 根据进程类型,来决定直接后台杀掉,还是弹框告知用户.

    ANR输出重要进程的traces信息,这些进程包含:

    • firstPids队列:第一个是ANR进程,第二个是system_server,剩余是所有persistent进程;

    • Native队列:是指/system/bin/目录的mediaserver,sdcard 以及surfaceflinger进程;

    • lastPids队列: 是指mLruProcesses中的不属于firstPids的所有进程。

    下面看下收集各进程堆栈信息逻辑:

    // AMS
       /**
         * If a stack trace dump file is configured, dump process stack traces.
         * @param firstPids of dalvik VM processes to dump stack traces for first
         * @param lastPids of dalvik VM processes to dump stack traces for last
         * @param nativePids optional list of native pids to dump stack crawls
         */
        public static File dumpStackTraces(ArrayList<Integer> firstPids,
                ProcessCpuTracker processCpuTracker, SparseArray<Boolean> lastPids,
                ArrayList<Integer> nativePids) {
            ArrayList<Integer> extraPids = null;
    
            Slog.i(TAG, "dumpStackTraces pids=" + lastPids + " nativepids=" + nativePids);
    
            // Measure CPU usage as soon as we're called in order to get a realistic sampling
            // of the top users at the time of the request.
            if (processCpuTracker != null) {
                processCpuTracker.init();
                try {
                    Thread.sleep(200); // 等待 200ms 
                } catch (InterruptedException ignored) {
                }
           // 测量CPU使用情况
                processCpuTracker.update();
    
                // We'll take the stack crawls of just the top apps using CPU. 收集 5 个最高使用 cpu 的 进程 
                final int N = processCpuTracker.countWorkingStats();
                extraPids = new ArrayList<>();
                for (int i = 0; i < N && extraPids.size() < 5; i++) {
                    ProcessCpuTracker.Stats stats = processCpuTracker.getWorkingStats(i);
                    if (lastPids.indexOfKey(stats.pid) >= 0) {
                        if (DEBUG_ANR) Slog.d(TAG, "Collecting stacks for extra pid " + stats.pid);
                        extraPids.add(stats.pid);
                    } else {
                        Slog.i(TAG, "Skipping next CPU consuming process, not a java proc: "
                                + stats.pid);
                    }
                }
            }
    
            final File tracesDir = new File(ANR_TRACE_DIR);
            // Each set of ANR traces is written to a separate file and dumpstate will process
            // all such files and add them to a captured bug report if they're recent enough.  每一个 anr 都保存在单独的文件中的
            maybePruneOldTraces(tracesDir);
    
            // NOTE: We should consider creating the file in native code atomically once we've
            // gotten rid of the old scheme of dumping and lot of the code that deals with paths
            // can be removed.  创建 anr 文件
            File tracesFile = createAnrDumpFile(tracesDir);
            if (tracesFile == null) {
                return null;
            }
         // 收集 anr 堆栈
            dumpStackTraces(tracesFile.getAbsolutePath(), firstPids, nativePids, extraPids);
            return tracesFile;
        }
    
       // 创建 anr 文件
        private static synchronized File createAnrDumpFile(File tracesDir) {
            if (sAnrFileDateFormat == null) {
                sAnrFileDateFormat = new SimpleDateFormat("yyyy-MM-dd-HH-mm-ss-SSS");
            }
    
            final String formattedDate = sAnrFileDateFormat.format(new Date());
         // anr 文件名是 anr_加上时间
    final File anrFile = new File(tracesDir, "anr_" + formattedDate);      ...return anrFile; }
       // 收集堆栈逻辑
    public static void dumpStackTraces(String tracesFile, ArrayList<Integer> firstPids, ArrayList<Integer> nativePids, ArrayList<Integer> extraPids) { Slog.i(TAG, "Dumping to " + tracesFile); // We don't need any sort of inotify based monitoring when we're dumping traces via // tombstoned. Data is piped to an "intercept" FD installed in tombstoned so we're in full // control of all writes to the file in question.       // We must complete all stack dumps within 20 seconds. 在 20s 里面完成堆栈收集工作,未完成也会直接退出 long remainingTime = 20 * 1000; // First collect all of the stacks of the most important pids. 收集最重要的几个进程的信息 if (firstPids != null) { int num = firstPids.size(); for (int i = 0; i < num; i++) { Slog.i(TAG, "Collecting stacks for pid " + firstPids.get(i)); final long timeTaken = dumpJavaTracesTombstoned(firstPids.get(i), tracesFile, remainingTime); remainingTime -= timeTaken; if (remainingTime <= 0) { Slog.e(TAG, "Aborting stack trace dump (current firstPid=" + firstPids.get(i) + "); deadline exceeded."); return; } } } // Next collect the stacks of the native pids 收集 native 堆栈 if (nativePids != null) { for (int pid : nativePids) { Slog.i(TAG, "Collecting stacks for native pid " + pid); final long nativeDumpTimeoutMs = Math.min(NATIVE_DUMP_TIMEOUT_MS, remainingTime); final long start = SystemClock.elapsedRealtime(); Debug.dumpNativeBacktraceToFileTimeout( pid, tracesFile, (int) (nativeDumpTimeoutMs / 1000)); final long timeTaken = SystemClock.elapsedRealtime() - start; remainingTime -= timeTaken;
              ... 超时则停止收集
    } } // Lastly, dump stacks for all extra PIDs from the CPU tracker. 最后是前面最高的 5 个 if (extraPids != null) { for (int pid : extraPids) { Slog.i(TAG, "Collecting stacks for extra pid " + pid); final long timeTaken = dumpJavaTracesTombstoned(pid, tracesFile, remainingTime); remainingTime -= timeTaken;      ... } } Slog.i(TAG, "Done dumping"); }
    该方法的主要功能,依次输出:
    1. 收集firstPids进程的stacks;
      • 第一个是发生ANR进程;

      • 第二个是system_server;

      • mLruProcesses中所有的persistent进程;

    2. 收集Native进程的stacks;(dumpNativeBacktraceToFile)

      • 依次是mediaserver,sdcard,surfaceflinger进程;

    3. 收集lastPids进程的stacks;;

      • 依次输出CPU使用率top 5的进程; 

    七、总结

    当出现ANR时,都是调用到AMS.appNotResponding()方法,当然这里介绍的 provider 例外.

    Timeout时长

    • 对于前台服务,则超时为SERVICE_TIMEOUT = 20s;

    • 对于后台服务,则超时为SERVICE_BACKGROUND_TIMEOUT = 200s

    • 对于前台广播,则超时为BROADCAST_FG_TIMEOUT = 10s;

    • 对于后台广播,则超时为BROADCAST_BG_TIMEOUT = 60s;

    • ContentProvider超时为CONTENT_PROVIDER_PUBLISH_TIMEOUT = 10s;

    超时检测

    Service超时检测机制:

    • 超过一定时间没有执行完相应操作来触发移除延时消息,则会触发anr;

    BroadcastReceiver超时检测机制:

    • 有序广播的总执行时间超过 2* receiver个数 * timeout时长,则会触发anr;

    • 有序广播的某一个receiver执行过程超过 timeout时长,则会触发anr;

    另外:

    • 对于Service, Broadcast, Input发生ANR之后,最终都会调用AMS.appNotResponding;

    • 对于provider,在其进程启动时publish过程可能会出现ANR, 则会直接杀进程以及清理相应信息,而不会弹出ANR的对话框. appNotRespondingViaProvider()过程会走appNotResponding(), 这个就不介绍了,很少使用,由用户自定义超时时间. 

    最后,真诚感谢 gityuan 的博客。

    参考文章 

    http://gityuan.com/2016/12/02/app-not-response/

    http://gityuan.com/2016/07/02/android-anr/

    http://gityuan.com/2017/01/01/input-anr/

    http://gityuan.com/2019/04/06/android-anr/

    树林美丽、幽暗而深邃,但我有诺言尚待实现,还要奔行百里方可沉睡。 -- 罗伯特·弗罗斯特
  • 相关阅读:
    图像有用区域--------深搜和广搜的第一次二选一
    24Pointgame-----24点游戏
    CAP定理和BASE理论
    并查集
    七桥问题和一笔画
    组合数问题--------一种新的 搜索 思路
    最少换乘 之简化版
    吝啬的国度 ---用vector 来构图
    WGZX:javaScript 学习心得--1
    eclipse Maven -->web project
  • 原文地址:https://www.cnblogs.com/huansky/p/14954020.html
Copyright © 2011-2022 走看看