zoukankan      html  css  js  c++  java
  • 内核编译之vmlinuz vmlinux system.map initrd

    一、vmlinuz 
    vmlinuz是可引导的、压缩的内核。“vm”代表“Virtual Memory”。Linux 支持虚拟内存,不像老的操作系统比如DOS有640KB内存的限制。Linux能够使用硬盘空间作为虚拟内存,因此得名“vm”。vmlinuz是可执行 的Linux内核,它位于/boot/vmlinuz,它一般是一个软链接,比如图中是vmlinuz-2.4.7-10的软链接。 
     
    vmlinuz的建立有两种方式。一是编译内核时通过“make zImage”创建,然后通过: 
    “cp /usr/src/linux-2.4/arch/i386/linux/boot/zImage /boot/vmlinuz”产生。zImage适用于小内核的情况,它的存在是为了向后的兼容性。二是内核编译时通过命令make bzImage创建,然后通过:“cp /usr/src/linux-2.4/arch/i386/linux/boot/bzImage /boot/vmlinuz”产生。bzImage是压缩的内核映像,需要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引起 误解,bz表示“big zImage”。 bzImage中的b是“big”意思。 
    zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不仅是一个压缩文件,而且在这两个文件的开头部分内嵌有gzip解压缩代码。所以你不能用gunzip 或 gzip –dc解包vmlinuz。 
    内 核文件中包含一个微型的gzip用于解压缩内核并引导它。两者的不同之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage 解压缩内核到高端内存(1M以上)。如果内核比较小,那么可以采用zImage 或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。
    vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。 
    二、 initrd-x.x.x.img 
    initrd 是“initial ramdisk”的简写。initrd一般被用来临时的引导硬件到实际内核vmlinuz能够接管并继续引导的状态。图中的initrd- 2.4.7-10.img主要是用于加载ext3等文件系统及scsi设备的驱动。比如,使用的是scsi硬盘,而内核vmlinuz中并没有这个 scsi硬件的驱动,那么在装入scsi模块之前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/modules下。为了解决这个 问题,可以引导一个能够读实际内核的initrd内核并用initrd修正scsi引导问题。initrd-2.4.7-10.img是用gzip压缩的 文件,下面来看一看这个文件的内容,操作步骤如下图所示: 
     
    从图中linuxrc这个脚本的内容可以看到,initrd实现加载一些模块和安装文件系统等。 
    initrd映象文件是使用mkinitrd创建的。mkinitrd实用程序能够创建initrd映象文件。这个命令是RedHat专有的。其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体情况请看帮助:man mkinitrd 
     
    下面的命令创建initrd映象文件: 
     
    三、 System.map 
    System.map是一个特定内核的内核符号表。它是你当前运行的内核的System.map的链接。 
    内核符号表是怎么创建的呢? System.map是由“nm vmlinux”产生并且不相关的符号被滤出。对于本文中的例子,编译内核时,System.map创建在/usr/src/linux-2.4/System.map。像下面这样: 
    nm /boot/vmlinux-2.4.7-10 > System.map 
    下面几行来自/usr/src/linux-2.4/Makefile: 
    nm vmlinux | grep -v '(compiled)|(.o$$)|( [aUw] )|(..ng$$)|(LASH[RL]DI)' | sort > System.map 
    然后复制到/boot: 
    cp /usr/src/linux/System.map /boot/System.map-2.4.7-10 
    下图是System.map文件的一部分: 
     
    在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号。 
    Linux内核不使用符号名,而是通过变量或函数的地址来识别变量或函数名。比如不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。 
    对于使用计算机的人来说,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,所以编译器/连接器允许我们编码时使用符号名,当内核运行时使用地址。 
    然而,在有的情况下,我们需要知道符号的地址,或者需要知道地址对应的符号。这由符号表来完成,符号表是所有符号连同它们的地址的列表。上图就是一个内核符号表,由上图可知变量名checkCPUtype在内核地址c01000a5。 
    Linux 符号表使用到2个文件: 
    /proc/ksyms 
    System.map 
    下图是/proc/ksyms的一部分。 
    /proc /ksyms是一个“proc file”,在内核引导时创建。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0可以看 出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map 具有的是错误的符号信息。每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。 
     
     
    虽 然内核本身并不真正使用System.map,但其它程序比如klogd, lsof和ps等软件需要一个正确的System.map。如果你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序 故障会带来困难。没有System.map,你可能会面临一些令人烦恼的提示信息。 
    另外少数驱动需要System.map来解析符号,没有为你当前运行的特定内核创建的System.map它们就不能正常工作。 
    Linux 的内核日志守护进程klogd为了执行名称-地址解析,klogd需要使用System.map。System.map应当放在使用它的软件能够找到它的 地方。执行:man klogd可知,如果没有将System.map作为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map: 
    /boot/System.map 
    /System.map 
    /usr/src/linux/System.map 
    System.map也有版本信息,klogd能够智能地查找正确的映象(map)文件。
  • 相关阅读:
    矩阵运算(二维数组)
    AndroidManifest.xml
    单位和尺寸
    java Map集合类
    http相关
    文件管理与XMl、JSON解析
    Handler与多线程
    App内容分享
    Fragment以及懒加载
    广播接收器与短信
  • 原文地址:https://www.cnblogs.com/huapox/p/3516314.html
Copyright © 2011-2022 走看看