Monte Carlo:
通过极限情况下的分布关系$pi (x’) =sumlimits_{x}{ pi (x)P(x->x’)} $
有p(x’)$approxsumlimits_{x}{p(x)T(x—>x’)}$
若T满足regular markov chain的条件,则Monte Carlo方法保证在极限条件下收敛到目标分布。
Regular Markov Chain
转移矩阵经过若干次相乘后,所有项都不为0的马尔科夫链就是规则马尔科夫链。
充分条件:任意两个状态都相连,每个状态自转移概率不为0.
An square matrix is called regular if for some integer all entries of are positive.
Example
The matrix
is not a regular matrix, because for all positive integer ,
The matrix
is a regular matrix, because has all positive entries.
It can also be shown that all other eigenvalues of A are less than 1, and algebraic multiplicity of 1 is one.
It can be shown that if is a regular matrix then approaches to a matrix whose columns are all equal to a probability vector which is called the steady-state vector of the regular Markov chain.
where .
It can be shown that for any probability vector when gets large, approaches to the steady-state vector
.
That is
where .
It can also be shown that the steady-state vector q is the only vector such that
Note that this shows q is an eigenvector of A and is eigenvalue of A.
Mixed:收敛的
验证方法,通常不能验证已经mixed,但是能验证还不是mixed:
1、使用windows,截取一个时间段的数据看是否相近。但是可能在收敛过程中有小部分数据先聚集到一起,这不能说明是收敛的。
2、使用两个不同的初始状态的马尔科夫链。在同一个时间观察,如果数据不相近,则不是mixed。
实际中可以使用一个随机初始的,和一个高概率初始的来比较。
MCMC方法取得的样本不是IID的,所以有时需要间隔一段再取。
The faster the Markov Chain converges, the less correlated are the samples.
Gibbs Sampling
对多维数据有效。
不能mix的gibbs sampling chain
metropolis-hastings