zoukankan      html  css  js  c++  java
  • Sampling

    Monte Carlo:

    通过极限情况下的分布关系$pi (x’) =sumlimits_{x}{ pi (x)P(x->x’)} $

    有p(x’)$approxsumlimits_{x}{p(x)T(x—>x’)}$

    若T满足regular markov chain的条件,则Monte Carlo方法保证在极限条件下收敛到目标分布。

    Regular Markov Chain

    转移矩阵经过若干次相乘后,所有项都不为0的马尔科夫链就是规则马尔科夫链。

       充分条件:任意两个状态都相连,每个状态自转移概率不为0.

    An square matrix $A$ is called regular if for some integer $n$ all entries of $ A^n $ are positive.

    Example

    The matrix

    egin{displaymath}A = left[ egin{array}{rr}
0&1\
1&0\
end{array}

ight]end{displaymath}

    is not a regular matrix, because for all positive integer $n$,

    egin{displaymath}A^{2n} = left[ egin{array}{rr}
1&0\
0&1\
end{arra...
...left[ egin{array}{rr}
0&1\
1&0\
end{array}

ight]end{displaymath}

    The matrix $A =left[ egin{array}{rrrrr}
.25&.20&.25&.30 \
.20&.30&.25&.30 \
.25&.20&.40&.10 \
.30&.30&.10&.30 \
end{array} 
ight[
$

    is a regular matrix, because $A^1 $ has all positive entries.

    It can also be shown that all other eigenvalues of A are less than 1, and algebraic multiplicity of 1 is one.

    It can be shown that if $A$ is a regular matrix then $ A^n $ approaches to a matrix $ Q $ whose columns are all equal to a probability vector $ q $ which is called the steady-state vector of the regular Markov chain.

    egin{displaymath}mbox{ if } A mbox{ regular, then } A^n 
ightarrow Q = lef...
...&&.\
.&.&&&&.\
q_k&q_k&.&.&.&q_k\
end{array}

ight]end{displaymath}

    where $q_{1} + q_{2} + dots + q_{k} = 1$.

    It can be shown that for any probability vector $x^{(0) }$ when $n$ gets large, $A^n x^{(0)}$ approaches to the steady-state vector

    egin{displaymath}{f q } = left[ egin{array}{r}
q_1\
q_2\
vdots \
q_k\
end{array}

ight]end{displaymath}

    .

    That is

    egin{displaymath}A^n x^{(0)} longrightarrow q=left[ egin{array}{r}
q_1\
q_2\
.\
.\
.\
q_k\
end{array}

ight]end{displaymath}

    where $q_{1} + q_{2} + dots + q_{k} = 1$.

    It can also be shown that the steady-state vector q is the only vector such that

    egin{displaymath}Aq = qend{displaymath}

    Note that this shows q is an eigenvector of A and $ 1$ is eigenvalue of A.

    Mixed:收敛的

    验证方法,通常不能验证已经mixed,但是能验证还不是mixed:

    1、使用windows,截取一个时间段的数据看是否相近。但是可能在收敛过程中有小部分数据先聚集到一起,这不能说明是收敛的。

    2、使用两个不同的初始状态的马尔科夫链。在同一个时间观察,如果数据不相近,则不是mixed。

    实际中可以使用一个随机初始的,和一个高概率初始的来比较。

    MCMC方法取得的样本不是IID的,所以有时需要间隔一段再取。

    The faster the Markov Chain converges, the less correlated are the samples.

    image

    image

    image

    Gibbs Sampling

    对多维数据有效。

    image

    不能mix的gibbs sampling chain

    image

    metropolis-hastings

    image

  • 相关阅读:
    一步一步教你在GridView中实现可收缩的面板
    收藏微软面试智力题 (附答案)
    WF4.0实战(一):文件审批流程
    WF4.0实战(六):控制WPF动画
    WF4.0实战(十一):邮件通知
    WF4.0实战(十):分布式酒店订房系统
    WF4.0实战(十六):模拟红绿灯
    WF4.0实战(五):实现一个直观易扩展的自动测试框架
    Beginning WF4读书笔记(一):创建一个简单的工作流
    DataGridView打印类
  • 原文地址:https://www.cnblogs.com/huashiyiqike/p/3250545.html
Copyright © 2011-2022 走看看