zoukankan      html  css  js  c++  java
  • 跟我学丨如何用鲲鹏服务器搭建Hadoop全分布式集群

    摘要:今天教大家如何利用鲲鹏服务器搭建Hadoop全分布式集群,动起来···

    一、Hadoop常见的三种运行模式

    1、单机模式(独立模式)(Local或Standalone Mode)

    默认情况下Hadoop就是处于该模式,用于开发和调式。不对配置文件进行修改。使用本地文件系统,而不是分布式文件系统。

    Hadoop不会启动NameNode、DataNode、JobTracker、TaskTracker等守护进程,Map()和Reduce()任务作为同一个进程的不同部分来执行的。

    用于对MapReduce程序的逻辑进行调试,确保程序的正确。

    2、伪分布式模式(Pseudo-Distrubuted Mode)

    Hadoop的守护进程运行在本机机器,模拟一个小规模的集群,在一台主机模拟多主机。

    Hadoop启动NameNode、DataNode、JobTracker、TaskTracker这些守护进程都在同一台机器上运行,是相互独立的Java进程。

    在这种模式下,Hadoop使用的是分布式文件系统,各个作业也是由JobTraker服务,来管理的独立进程。在单机模式之上增加了代码调试功能,允许检查内存使用情况,HDFS输入输出,以及其他的守护进程交互。类似于完全分布式模式,因此,这种模式常用来开发测试Hadoop程序的执行是否正确。

    3、全分布式集群模式(Full-Distributed Mode)

    Hadoop的守护进程运行在一个集群上 Hadoop的守护进程运行在由多台主机搭建的集群上,是真正的生产环境。

    1. 下载并解压Hadoop、JDK安装包并配置好环境变量、节点域名解析、防火墙、端口等组成相互连通的网络。
    2. 进入Hadoop的解压目录,编辑hadoop-env.sh文件(注意不同版本后配置文件的位置有所变化)
    3. 编辑Hadoop中配置文件core-site.xml(Hadoop集群的特性,作用于全部进程及客户端)、hdfs-site.xml(配置HDFS集群的工作属性)、mapred-site.xml(配置MapReduce集群的属性)、yarn-site.xml四个核心配置文件
    4. 配置ssh,生成密钥,使到ssh可以免密码连接localhost,把各从节点生成的公钥添加到主节点的信任列表。
    5. 格式化HDFS后 使用./start-all.sh启动Hadoop集群

    二、Hadoop常见组件

    Hadoop由HDFS、Yarn、Mapreduce三个核心模块组成,分别负责分布式存储、资源分配和管理、分布式计算。

    1、Hadoop-HDFS模块

    1. HDFS:是一种分布式存储系统,采用Master和Slave的主从结构,主要由NameNode和DataNode组成。HDFS会将文件按固定大小切成若干块,分布式存储在所有DataNode中,每个文件块可以有多个副本,默认副本数为3。
    2. NameNode: Master节点,负责元数据的管理,处理客户端请求。
    3. DataNode: Slave节点,负责数据的存储和读写操作。

    2、Hadoop-Yarn模块

    1. Yarn:是一种分布式资源调度框架,采用Master和Slave的主从结构,主要由ResourceManager . ApplicationMaster和NodeManager组成,负责整个集群的资源管理和调度。
    2. ResourceManager:是一个全局的资源管理器,负责整个集群的资源管理和分配。
    3. ApplicationMaster:当用户提交应用程序时启动,负责向ResourceManager申请资源和应用程序的管理。
    4. NodeManager:运行在Slave节点,负责该节点的资源管理和使用。
    5. Container: Yarn的资源抽象,是执行具体应用的基本单位,任何一个Job或应用程序必须运行在一个或多个Container中。

    3、Hadoop-Mapreduce模块

    1. Mapreduce:是一种分布式计算框架,主要由Map和Reduce两个阶段组成。支持将一个计算任务划分为多个子任务,分散到各集群节点并行计算。
    2. Map阶段:将初始数据分成多份,由多个map任务并行处理。
    3. Reduce阶段:收集多个Map任务的输出结果并进行合并,最终形成一个文件作为reduce阶段的结果。

    全分布式集群模式(Full-Distributed Mode)搭建

    【基本环境】

    三台鲲鹏km1.2xlarge.8内存优化型 8vCPUs | 64GB CentOS 7.6 64bit with ARM CPU:Huawei Kunpeng 920 2.6GHz

    其中jack20节点作为NameNode, Node1、 Node2作为DataNode,而Node1也作为辅助NameNode ( Secondary NameNode )。

    【基本流程】

    1. 下载并解压Hadoop、JDK安装包并配置好环境变量、节点域名解析、防火墙、端口
    2. 进入Hadoop的解压目录,编辑hadoop-env.sh文件(注意不同版本后配置文件的位置有所变化)
    3. 编辑Hadoop中配置文件core-site.xml、hdfs-site.xml、mapred-site.xml、yarn-site.xml四个核心配置文件
    4. 配置ssh,生成密钥,使到ssh可以免密码连接localhost
    5. 格式化HDFS后 使用./start-all.sh启动Hadoop集群

    关闭防火墙和selinux

    (1)各个节点都执行命令关闭防火墙:

    systemctl stop firewalld
    systemctl disable firewalld
    systemctl status firewalld

    (2)关闭selinux

    进入selinux的config文件,将selinux原来的强制模式(enforcing)修改为关闭模式(disabled)

    setenforce 0getenforce
    sed -i 's#SELINUX=enforcing#SELINUX=disabled#g' /etc/sysconfig/selinux
    grep SELINUX=disabled /etc/sysconfig/selinux
    cat /etc/sysconfig/selinux

    1.安装openJDK-1.8.0

    1.1. 下载安装openJDK-1.8.0

    下载openJDK-1.8.0并安装到指定目录(如“/home”)。

    进入目录:

    cd /home

    下载openJDK-1.8.0并安装:

    wget https://sandbox-experiment-resource-north-4.obs.cn-north-4.myhuaweicloud.com/hadoop-performance-tuning/OpenJDK8U-jdk_aarch64_linux_hotspot_8u252b09.tar.gz
    #解压
    tar -zxf OpenJDK8U-jdk_aarch64_linux_hotspot_8u252b09.tar.gz

    1.2. 配置环境变量

    执行如下命令,打开/etc/profile文件:

    vim /etc/profile

    点击键盘"Shift+g"移动光标至文件末尾,单击键盘“i”键进入编辑模式,在代码末尾回车下一行,添加如下内容:

    下一行,添加如下内容:

    export JAVA_HOME=/home/jdk8u252-b09
    export PATH=$JAVA_HOME/bin:$PATH
    export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

    添加完成,单击键盘ESC退出编辑,键入“:wq”回车保存并退出。

    1.3. 环境变量生效

    使环境变量生效:

    source /etc/profile

    验证openJDK-1.8.0安装是否成功:

    java -version

    1.4.配置域名解析

    vim /etc/hosts

    2.安装dstat资源监控工具

    yum install dstat-0.7.2-12.el7 -y

    验证dstat是否安装成功:

    dstat -V

    3. 部署hadoop-3.1.1

    3. 1. 获取hadoop-3.1.1软件包

    ①下载hadoop-3.1.1安装包到/home目录下:

    cd /home
    wget https://sandbox-experiment-resource-north-4.obs.cn-north-4.myhuaweicloud.com/hadoop-performance-tuning/hadoop-3.1.1.tar.gz
    #解压hadoop-3.1.1
    tar -zxvf hadoop-3.1.1.tar.gz

    ②建立软链接

    ln -s hadoop-3.1.1 hadoop

    ③配置hadoop环境变量,打开/etc/profile文件:

    vim /etc/profile

    点击键盘"Shift+g"移动光标至文件末尾,单击键盘“i”键进入编辑模式,在代码末尾回车下一行,添加如下内容:

    export HADOOP_HOME=/home/hadoop
    export PATH=$HADOOP_HOME/bin:$PATH

    添加完成,单击键盘ESC退出编辑,键入“:wq”回车保存并退出。

    ④使环境变量生效:

    source /etc/profile

    ⑤验证hadoop安装是否成功:

    hadoop version

    执行结果如下图所示,表示安装成功:

    3.2. 修改hadoop配置文件

    hadoop所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下,修改以下配置文件前,需要切换到"$HADOOP_HOME/etc/hadoop"目录。

    cd $HADOOP_HOME/etc/hadoop/

    ①修改hdfs-env.xml

    打开hadoop-env.sh文件:

    vim hadoop-env.sh

    找到hadoop-env.sh的第54行中的java目录(在命令模式下输入“:set nu”,查看行数),输入java的安装目录(),然后删除行左端“#”取消注释,并保存退出

    ② 修改core-site.xml

    打开core-site.xml文件

    vim core-site.xml

    在<configuration></configuration>标签之间添加如下代码并保存退出

     <property>
            <name>fs.defaultFS</name>
            <value>hdfs://jack20:9000/</value>
            <description> 设定NameNode的主机名及端口</description>
        </property>
    
        <property>
            <name>hadoop.tmp.dir</name>
            <value>/home/hadoop/tmp/hadoop-${user.name}</value>
            <description>指定hadoop 存储临时文件的目录 </description>
        </property> 
     
        <property>
            <name>hadoop.proxyuser.hadoop.hosts</name>
            <value>*</value>
            <description>配置该superUser允许通过代理的用户 </description>
        </property>
    
        <property>
            <name>hadoop.proxyuser.hadoop.groups</name>
            <value>*</value>
            <description>配置该superUser允许通过代理用户所属组 </description>
        </property>

    ③ 修改hdfs-site.xml,

    打开hdfs-site.xml文件

    vim hdfs-site.xml

    在<configuration></configuration>标签之间添加如下代码并保存退出

        <property>  
            <name>dfs.namenode.http-address</name>  
            <value>jack20:50070</value>  
            <description> NameNode 地址和端口 </description>  
        </property>
     
        <property>  
            <name>dfs.namenode.secondary.http-address</name>  
            <value>node1:50090</value>  
            <description> Secondary NameNode地址和端口 </description>  
        </property> 
     
        <property>
            <name>dfs.replication</name>
            <value>3</value>
            <description> 设定 HDFS 存储文件的副本个数,默认为3 </description>
        </property>
     
        <property>  
            <name>dfs.namenode.name.dir</name>  
            <value>file:///home/hadoop/hadoop3.1/hdfs/name</value>  
                   <description> NameNode用来持续存储命名空间和交换日志的本地文件系统路径</description>  
        </property>  
    
        <property>  
            <name>dfs.datanode.data.dir</name>  
            <value>file:///home/hadoop/hadoop3.1/hdfs/data</value>  
                   <description> DataNode在本地存储块文件的目录列表</description>  
        </property> 
    
        <property>  
            <name>dfs.namenode.checkpoint.dir</name>  
            <value>file:///home/hadoop/hadoop3.1/hdfs/namesecondary</value>  
            <description> 设置 Secondary NameNode存储临时镜像的本地文件系统路径。如果这是一个用逗号分隔的文件列表,则镜像将会冗余复制到所有目录
            </description>  
        </property> 
     
        <property>
            <name>dfs.webhdfs.enabled</name>
            <value>true</value>
            <description>是否允许网页浏览HDFS文件</description>
        </property>
    
        <property>
            <name>dfs.stream-buffer-size</name>
            <value>1048576</value>
            <description> 默认是4 KB,作为Hadoop缓冲区,用于Hadoop读HDFS的文件和写HDFS的文件,
                          还有map的输出都用到了这个缓冲区容量(如果太大了map和reduce任务可能会内存溢出)   
            </description>
        </property> 

    ④修改mapred-site.xml

    打开mapred-site.xml文件:

    vim mapred-site.xml

    在<configuration></configuration>标签之间添加如下代码并保存退出

     <property>
            <name>mapreduce.framework.name</name>
            <value>yarn</value>
            <description> 指定MapReduce程序运行在Yarn上 </description>  
        </property>
    
        <property>
            <name>mapreduce.jobhistory.address</name>
            <value>jack20:10020</value>
            <description> 指定历史服务器端地址和端口 </description>
        </property>
     
        <property>
            <name>mapreduce.jobhistory.webapp.address</name>
            <value>jack20:19888</value>
            <description> 历史服务器web端地址和端口</description>
        </property>
    
        <property>
              <name>mapreduce.application.classpath</name>
              <value>
               /home/hadoop/etc/hadoop,
               /home/hadoop/share/hadoop/common/*,
               /home/hadoop/share/hadoop/common/lib/*,
               /home/hadoop/share/hadoop/hdfs/*,
               /home/hadoop/share/hadoop/hdfs/lib/*,
               /home/hadoop/share/hadoop/mapreduce/*,
               /home/hadoop/share/hadoop/mapreduce/lib/*,
               /home/hadoop/share/hadoop/yarn/*,
               /home/hadoop/share/hadoop/yarn/lib/*
              </value>
         </property>
    
        <property>
            <name>mapreduce.map.memory.mb</name>
            <value>6144</value>
            <description> map container配置的内存的大小(调整到合适大小防止物理内存溢出)</description>
        </property>
    
        <property>
            <name>mapreduce.reduce.memory.mb</name>
            <value>6144</value>
            <description> reduce container配置的内存的大小(调整到合适大小防止物理内存溢出)</description>
        </property>
    
        <property>
            <name>yarn.app.mapreduce.am.env</name>
            <value>HADOOP_MAPRED_HOME=/home/hadoop</value>
        </property>
    
        <property>
            <name>mapreduce.map.env</name>
            <value>HADOOP_MAPRED_HOME=/home/hadoop</value>
        </property>
    
        <property>
            <name>mapreduce.reduce.env</name>
            <value>HADOOP_MAPRED_HOME=/home/hadoop</value>
        </property>

    ⑤修改yarn-site.xml

    打开yarn-site.xml文件:

    vim yarn-site.xml

    在<configuration></configuration>标签之间添加如下代码并保存退出

     <property>
            <name>yarn.resourcemanager.hostname</name>
            <value>jack20</value>
            <description> 指定ResourceManager的主机名</description>
        </property>
    
        <property>
            <name>yarn.nodemanager.resource.memory-mb</name>
            <value>53248</value>
            <description> NodeManager总的可用物理内存。
                                   注意:该参数是不可修改的,一旦设置,整个运行过程中不可动态修改。
                                   该参数的默认值是8192MB,即使你的机器内存不够8192MB,YARN也会按照这些内存来使用,
                                   因此,这个值通过一定要配置。
            </description>
         </property>
     
        <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
            <description> 指定MapReduce走shuffle</description>
        </property>
     
        <property>
            <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
            <value>org.apache.hadoop.mapred.ShuffleHandler</value>
        </property>
     
        <property>
            <name>yarn.resourcemanager.address</name>
            <value>jack20:8032</value>
            <description> 指定ResourceManager对客户端暴露的地址和端口,客户端通过该地址向RM提交应用程序,杀死应用程序等</description>
        </property>
     
        <property>
            <name>yarn.resourcemanager.scheduler.address</name>
            <value>jack20:8030</value>
            <description> 指定ResourceManager对ApplicationMaster暴露的访问地址。ApplicationMaster通过该地址向RM申请资源、释放资源等</description>
        </property>
     
        <property>
            <name>yarn.resourcemanager.resource-tracker.address</name>
            <value>jack20:8031</value>
            <description> 指定ResourceManager对NodeManager暴露的地址。NodeManager通过该地址向RM汇报心跳,领取任务等</description>
        </property>
     
        <property>
            <name>yarn.resourcemanager.admin.address</name>
            <value>jack20:8033</value>
            <description> 指定ResourceManager 对管理员暴露的访问地址。管理员通过该地址向RM发送管理命令等</description>
        </property>
     
        <property>
            <name>yarn.resourcemanager.webapp.address</name>
            <value>jack20:8088</value>
            <description> 指定ResourceManager对外web UI地址。用户可通过该地址在浏览器中查看集群各类信息</description>
        </property>
    
        <property>
            <name>yarn.log-aggregation-enable</name>
            <value>true</value>
            <description> 开启日志聚集功能</description>
        </property>
    
        <property>  
            <name>yarn.log.server.url</name>  
            <value>http://jack20:19888/jobhistory/logs</value>
            <description> 设置日志聚集服务器地址</description>
        </property>
    
        <property>
            <name>yarn.log-aggregation.retain-seconds</name>
            <value>604800</value>
            <description> 设置日志保留时间为7天</description>
        </property>

    ⑥将各个节点加入到workers

    echo jack20 > workers
    echo node1 > workers
    echo node2 > workers

    ⑦修改dfs和yarn的启动脚本,添加root用户权限

    (1)打开start-dfs.sh和stop-dfs.sh文件:

    vim /home/hadoop/sbin/start-dfs.sh
    vim /home/hadoop/sbin/stop-dfs.sh

    单击键盘“i”键进入编辑模式,在两个配置文件的第一行添加并保存退出:

    HDFS_DATANODE_USER=root
    HDFS_DATANODE_SECURE_USER=hdfs
    HDFS_NAMENODE_USER=root
    HDFS_SECONDARYNAMENODE_USER=root

    (2)打开start-yarn.sh 和 stop-yarn.sh文件

    vim /home/hadoop/sbin/start-yarn.sh
    vim /home/hadoop/sbin/stop-yarn.sh

    单击键盘“i”键进入编辑模式,在两个配置文件的第一行添加并保存退出:

    YARN_RESOURCEMANAGER_USER=root
    HADOOP_SECURE_DN_USER=yarn
    YARN_NODEMANAGER_USER=root

    4.集群配置&节点间免密登录

    (1)连通性测试

    (2)从主节点同步各个节点域名解析文件

    scp /etc/hosts node1:/etc/hosts
    scp /etc/hosts node2:/etc/hosts

    (3) 配置各节点间SSH免密登录

    分别在三台服务器中输入命令生成私钥和公钥(提示输入时按回车即可):

    ssh-keygen -t rsa

    jack20:

    node1:

    node2:

    然后分别在三台服务器上输入命令以复制公钥到服务器中:

    ssh-copy-id -i ~/.ssh/id_rsa.pub root@jack20
    ssh-copy-id -i ~/.ssh/id_rsa.pub root@node1
    ssh-copy-id -i ~/.ssh/id_rsa.pub root@node2

    ①继续连接:输入“yes”回车;
    ②输入密码(输入密码时,命令行窗口不会显示密码,输完之后直接回车)

    查看所有协商的秘钥

    SSH免密登录测试:

    Jack20->node1->node2->jack20->node2->node1->jack20

    (4) 复制hadoop到各datanode并修改

    把jack20的hadoop目录、jdk目录、/etc/hosts、/etc/profile复制到node1,node2节点

    cd $HADOOP_HOME/..
    #hadoop目录
    scp -r hadoop node1:/home
    scp -r hadoop node2:/home
    #java目录
    scp -r jdk8u252-b09 node1:/home
    scp -r jdk8u252-b09 node2:/home

    登录修改各服务器java和haoop环境变量

    vim /etc/profile

    点击键盘"Shift+g"移动光标至文件末尾,单击键盘“i”键进入编辑模式,在代码末尾回车下一行,添加如下内容并保存退出:

    export JAVA_HOME=/home/jdk8u252-b09
    export PATH=$JAVA_HOME/bin:$PATH
    export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
    export HADOOP_HOME=/home/hadoop
    export PATH=$HADOOP_HOME/bin:$PATH

    使环境变量生效:

    source /etc/profile

    5.启动hadoop

    注意:如果启动报错,请检查hadoop配置文件是否配置有误。

    第一次启动前一定要格式化HDFS:

    hdfs namenode -format

    注意:提示信息的倒数第2行出现“>= 0”表示格式化成功,如图。在Linux中,0表示成功,1表示失败。因此,如果返回“1”,就应该好好分析前面的错误提示信息,一 般来说是前面配置文件和hosts文件的问题,修改后同步到其他节点上以保持相同环境,再接着执行格式化操作

    执行脚本命令群起节点

    cd /home/hadoop/sbin
    #群起节点
    ./start-all.sh

    启动HDFS后,可以发现jack20节点作为NameNode, Node1、 Node2作为DataNode,而Node1也作为辅助NameNode ( Secondary NameNode )。可以通过jps命令在各节点上验证HDFS是否启动。jps 也是Windows中的命令,表示开启的Java进程如果出现下图所示的结果,就表示验证成功。

    客户端Web访问测试:

    (1)RMwebUI界面http://IP:8088

    (2)NameNode的webUI界面http://IP:50070

    6.集群基准测试

    (1)使用Hadoop自带的WordCount例子/share/Hadoop/mapredu icehadoop-mapreduce-examples-3.1.1.jar验证集群

    #创建目录,目录/data/wordcount用来存储Hadoop自带的WordCount例子的数据文件,运行这个MapReduce任务的结果输出到目录中的/output/wordcount文件中
    hdfs dfs -mkdir -p /data/wordcount
    hdfs dfs -mkdir -p /output/
     
    #将本地文件上传到HDFS中(这里上传一个配置文件),执行如下命令
    hdfs dfs -put /home/hadoop/etc/hadoop/core-site.xml /data/wordcount

    可以查看,上传后的文件情况,执行如下命令

    hdfs dfs -ls /data/wordcount

    下面运行WordCount案例,执行如下命令

    hadoop jar /home/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.1.jar wordcount /data/wordcount /output/wordcount

    (2)DFSIO测试

    使用hadoop的DFSIO写入50个文件,每个文件1000M

    hadoop jar /home/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.1-tests.jar TestDFSIO -write -nrFiles 50 -filesize 1000

    可以在RMwebUI界面查看当前任务的基本情况,包括内存使用量,CPU使用量等

    在NameNode的webUI界面查看刚刚DFSIO测试的各个节点HDFS占用情况

    (3)计算圆周率的大小

    hadoop jar /home/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-3.1.1-tests.jar pi 20 20

    静静等待结果就可以~

     本文分享自华为云社区《利用鲲鹏服务器快速搭建一个Hadoop全分布式集群笔记分享》,原文作者:Jack20。

    点击关注,第一时间了解华为云新鲜技术~

  • 相关阅读:
    人心散了、项目必然要败(转自CSDN)
    sql server加锁机制
    数据库事物隔离级别
    aop学习
    数据库加锁(转)
    托管代码和非托管代码效率的对比。
    day05 Linux文本处理命令
    day04 CentOS 异常,问题解决方法
    day02 Linux系统介绍与安装
    linux常用命令的英文单词缩写
  • 原文地址:https://www.cnblogs.com/huaweiyun/p/14601139.html
Copyright © 2011-2022 走看看