zoukankan      html  css  js  c++  java
  • vue大文件断点续传

    <template>
      <div id="app">
        <!-- 上传组件 -->
        <el-upload action drag :auto-upload="false" :show-file-list="false" :on-change="handleChange">
          <i class="el-icon-upload"></i>
          <div class="el-upload__text">将文件拖到此处,或<em>点击上传</em></div>
          <div class="el-upload__tip" slot="tip">大小不超过 200M 的视频</div>
        </el-upload>
    
        <!-- 进度显示 -->
        <div class="progress-box">
          <span>上传进度:{{ percent.toFixed() }}%</span>
          <el-button type="primary" size="mini" @click="handleClickBtn">{{ upload | btnTextFilter}}</el-button>
        </div>
    
        <!-- 展示上传成功的视频 -->
        <div v-if="videoUrl">
          <video :src="videoUrl" controls />
        </div>
      </div>
    </template>
    
    <script>
      import SparkMD5 from "spark-md5"
      import axios from "axios"
      
      export default {
        name: 'App3',
        filters: {
          btnTextFilter(val) {
            return val ? '暂停' : '继续'
          }
        },
        data() {
          return {
            percent: 0,
            videoUrl: '',
            upload: true,
            percentCount: 0
          }
        },
        methods: {
          async handleChange(file) {
            if (!file) return
            this.percent = 0
            this.videoUrl = ''
            // 获取文件并转成 ArrayBuffer 对象
            const fileObj = file.raw
            let buffer
            try {
              buffer = await this.fileToBuffer(fileObj)
            } catch (e) {
              console.log(e)
            }
            
            // 将文件按固定大小(2M)进行切片,注意此处同时声明了多个常量
            const chunkSize = 2097152,
              chunkList = [], // 保存所有切片的数组
              chunkListLength = Math.ceil(fileObj.size / chunkSize), // 计算总共多个切片
              suffix = /\.([0-9A-z]+)$/.exec(fileObj.name)[1] // 文件后缀名
              
            // 根据文件内容生成 hash 值
            const spark = new SparkMD5.ArrayBuffer()
            spark.append(buffer)
            const hash = spark.end()
    
            // 生成切片,这里后端要求传递的参数为字节数据块(chunk)和每个数据块的文件名(fileName)
            let curChunk = 0 // 切片时的初始位置
            for (let i = 0; i < chunkListLength; i++) {
              const item = {
                chunk: fileObj.slice(curChunk, curChunk + chunkSize),
                fileName: `${hash}_${i}.${suffix}` // 文件名规则按照 hash_1.jpg 命名
              }
              curChunk += chunkSize
              chunkList.push(item)
            }
            this.chunkList = chunkList // sendRequest 要用到
            this.hash = hash // sendRequest 要用到
            this.sendRequest()
          },
          
          // 发送请求
          sendRequest() {
            const requestList = [] // 请求集合
            this.chunkList.forEach((item, index) => {
              const fn = () => {
                const formData = new FormData()
                formData.append('chunk', item.chunk)
                formData.append('filename', item.fileName)
                return axios({
                  url: '/single3',
                  method: 'post',
                  headers: { 'Content-Type': 'multipart/form-data' },
                  data: formData
                }).then(res => {
                  if (res.data.code === 0) { // 成功
                    if (this.percentCount === 0) { // 避免上传成功后会删除切片改变 chunkList 的长度影响到 percentCount 的值
                      this.percentCount = 100 / this.chunkList.length
                    }
                    this.percent += this.percentCount // 改变进度
                    this.chunkList.splice(index, 1) // 一旦上传成功就删除这一个 chunk,方便断点续传
                  }
                })
              }
              requestList.push(fn)
            })
            
            let i = 0 // 记录发送的请求个数
            // 文件切片全部发送完毕后,需要请求 '/merge' 接口,把文件的 hash 传递给服务器
            const complete = () => {
              axios({
                url: '/merge',
                method: 'get',
                params: { hash: this.hash }
              }).then(res => {
                if (res.data.code === 0) { // 请求发送成功
                  this.videoUrl = res.data.path
                }
              })
            }
            const send = async () => {
              if (!this.upload) return
              if (i >= requestList.length) {
                // 发送完毕
                complete()
                return
              } 
              await requestList[i]()
              i++
              send()
            }
            send() // 发送请求
          },
          
          // 按下暂停按钮
          handleClickBtn() {
            this.upload = !this.upload
            // 如果不暂停则继续上传
            if (this.upload) this.sendRequest()
          },
          
          // 将 File 对象转为 ArrayBuffer 
          fileToBuffer(file) {
            return new Promise((resolve, reject) => {
              const fr = new FileReader()
              fr.onload = e => {
                resolve(e.target.result)
              }
              fr.readAsArrayBuffer(file)
              fr.onerror = () => {
                reject(new Error('转换文件格式发生错误'))
              }
            })
          }
        }
      }
    </script>
    
    <style scoped>
      .progress-box {
        box-sizing: border-box;
         360px;
        display: flex;
        justify-content: space-between;
        align-items: center;
        margin-top: 10px;
        padding: 8px 10px;
        background-color: #ecf5ff;
        font-size: 14px;
        border-radius: 4px;
      }
    </style>
    
    

    链接:https://juejin.cn/post/6977555547570569223
    来源:稀土掘金
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 相关阅读:
    CodeForces 797D Broken BST
    CodeForces 797C Minimal string
    CodeForces 797B Odd sum
    CodeForces 797A k-Factorization
    CodeForces 772B Volatile Kite
    OpenCV学习笔记二十:opencv_ts模块
    OpenCV学习笔记十九:opencv_gpu*模块
    OpenCV学习笔记十八:opencv_flann模块
    OpenCV学习笔记十七:opencv_bioinspired模块
    OpenCV学习笔记十六:opencv_calib3d模块
  • 原文地址:https://www.cnblogs.com/huayang1995/p/15694509.html
Copyright © 2011-2022 走看看