zoukankan      html  css  js  c++  java
  • Flask-SQLAlchemy常用操作

    一.SQLAlchemy介绍

    SQLAlchemy是一个基于Python实现的ORM框架。该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

    1
    pip3 install sqlalchemy

    组成部分:

    • Engine,框架的引擎
    • Connection Pooling ,数据库连接池
    • Dialect,选择连接数据库的DB API种类
    • Schema/Types,架构和类型
    • SQL Exprression Language,SQL表达式语言

    SQLAlchemy本身无法操作数据库,其本质上是依赖pymysql.MySQLdb,mssql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:

    SQLAlchemy用一个字符串表示连接信息:

    '数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    MySQL-Python
        mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
        
    pymysql
        mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
        
    MySQL-Connector
        mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
        
    cx_Oracle
        oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
        
    更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html

    底层处理

    使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # auth : pangguoping
    from sqlalchemy import create_engine
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
    
    # 执行SQL
    # cur = engine.execute(
    #     "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
    # )
    
    # 新插入行自增ID
    # cur.lastrowid
    
    # 执行SQL
    # cur = engine.execute(
    #     "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]
    # )
    
    
    # 执行SQL
    # cur = engine.execute(
    #     "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
    #     host='1.1.1.99', color_id=3
    # )
    
    # 执行SQL
    # cur = engine.execute('select * from hosts')
    # 获取第一行数据
    # cur.fetchone()
    # 获取第n行数据
    # cur.fetchmany(3)
    # 获取所有数据
    # cur.fetchall()

    说白了就是使用pymysql的方法一样.

    二. 使用

    1. 执行原生SQL语句

    import time
    import threading
    import sqlalchemy
    from sqlalchemy import create_engine
    from sqlalchemy.engine.base import Engine
     
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程时,最多等待的时间,超时报错,默认30秒
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置),-1代表永远不回收,即一直被重用
    )
     
     
    def task(arg):
        conn = engine.raw_connection()  #拿到的是一个原生的pymysql连接对象
        cursor = conn.cursor()
        cursor.execute(
            "select * from t1"
        )
        result = cursor.fetchall()
        cursor.close()
        conn.close()
     
     
    for i in range(20):
        t = threading.Thread(target=task, args=(i,))
        t.start()
    

      

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import time
    import threading
    import sqlalchemy
    from sqlalchemy import create_engine
    from sqlalchemy.engine.base import Engine
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5)
    
    
    def task(arg):
        conn = engine.contextual_connect()
        with conn:
            cur = conn.execute(
                "select * from t1"
            )
            result = cur.fetchall()
            print(result)
    
    
    for i in range(20):
        t = threading.Thread(target=task, args=(i,))
        t.start()
    View Code
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import time
    import threading
    import sqlalchemy
    from sqlalchemy import create_engine
    from sqlalchemy.engine.base import Engine
    from sqlalchemy.engine.result import ResultProxy
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5)
    
    
    def task(arg):
        cur = engine.execute("select * from t1")
        result = cur.fetchall()
        cur.close()
        print(result)
    
    
    for i in range(20):
        t = threading.Thread(target=task, args=(i,))
        t.start()
    View Code

    注意: 查看连接,进程cmd,mysql中>输入  show status like 'Threads%';

    2. ORM

    a. 创建数据库表

    创建单表

    import datetime
    from sqlalchemy import create_engine
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
    
    Base = declarative_base()   # 创建对象的基类:
    
    # 定义User对象:
    class Users(Base):
        # 表的名字:
        __tablename__ = 'users'
    
        # 表的结构:
        id = Column(Integer, primary_key=True)
        name = Column(String(32), index=True, nullable=False,default='xx')   # index指定是否是索引,nullable是否能为空
        email = Column(String(32), unique=True)   # 指定唯一
        ctime = Column(DateTime, default=datetime.datetime.now) #注意,此处设置时datetime.datetime.now若加了括号,则时间永远是程序启动时的时间,后面创建数据时,不会变化
        extra = Column(Text, nullable=True)
    
        __table_args__ = (
            UniqueConstraint('id', 'name', name='uix_id_name'), # 联合唯一索引
            Index('ix_id_name', 'name', 'email'), #给name和email创建普通索引,索引名为ix_id_name
        )
    
    
    def init_db():
        """
        根据类创建数据库表
        :return: 
        """
        # 初始化数据库连接:
        engine = create_engine(
            "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
            max_overflow=0,  # 超过连接池大小外最多创建的连接
            pool_size=5,  # 连接池大小
            pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
            pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
        )
    
        Base.metadata.create_all(engine) #找到所有继承了Base的类,按照其结构建表
    
    
    def drop_db():
        """
        根据类删除数据库表
        :return: 
        """
        engine = create_engine(
            "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
            max_overflow=0,  # 超过连接池大小外最多创建的连接
            pool_size=5,  # 连接池大小
            pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
            pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
        )
    
        Base.metadata.drop_all(engine)
    
    
    if __name__ == '__main__':
        drop_db()
        init_db()
    

      

    默认建的表的引擎是MyISAM,如果要设置成InnoDB(支持事务),该怎么设置呢?

        __table_args__ = {
            'mysql_engine': 'InnoDB',   # 指定表的引擎
            'mysql_charset': 'utf8'     # 指定表的编码格式
        }

    FK,M2M关系的创建

    from sqlalchemy import create_engine
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime,UniqueConstraint, Index
    from sqlalchemy.orm import relationship
    Base = declarative_base()   # 创建对象的基类:
    
    
    # ##################### 一对多示例 #########################
    class Hobby(Base):
        __tablename__ = 'hobby'
        id = Column(Integer, primary_key=True)
        caption = Column(String(50), default='篮球')
    
    
    class Person(Base):
        __tablename__ = 'person'
        nid = Column(Integer, primary_key=True)
        name = Column(String(32), index=True, nullable=True)
        hobby_id = Column(Integer, ForeignKey("hobby.id"))  #建FK关系
    
        # 与生成表结构无关,仅用于查询方便
        hobby = relationship("Hobby", backref='pers')   #反向关联的名字
    
    
    # ##################### 多对多示例 #########################
    # 这里多对多需要自己建第三张表,并绑定关系
    class Server2Group(Base):   
        __tablename__ = 'server2group'
        id = Column(Integer, primary_key=True, autoincrement=True)  #autoincrement 设置自增
        server_id = Column(Integer, ForeignKey('server.id'))
        group_id = Column(Integer, ForeignKey('group.id'))
    
    
    class Group(Base):
        __tablename__ = 'group'
        id = Column(Integer, primary_key=True)
        name = Column(String(64), unique=True, nullable=False)
    
        # 与生成表结构无关,仅用于查询方便
        servers = relationship('Server', secondary='server2group', backref='groups')    #反向关联的名字
    
    
    class Server(Base):
        __tablename__ = 'server'
    
        id = Column(Integer, primary_key=True, autoincrement=True)
        hostname = Column(String(64), unique=True, nullable=False)
    
    
    def init_db():
        """
        根据类创建数据库表
        :return:
        """
        engine = create_engine(
            "mysql+pymysql://root:123@127.0.0.1:3306/userinfo?charset=utf8",
            max_overflow=0,  # 超过连接池大小外最多创建的连接
            pool_size=5,  # 连接池大小
            pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
            pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
        )
    
        Base.metadata.create_all(engine)
    
    
    def drop_db():
        """
        根据类删除数据库表
        :return:
        """
        engine = create_engine(
            "mysql+pymysql://root:123@127.0.0.1:3306/userinfo?charset=utf8",
            max_overflow=0,  # 超过连接池大小外最多创建的连接
            pool_size=5,  # 连接池大小
            pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
            pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
        )
    
        Base.metadata.drop_all(engine)
    
    
    if __name__ == '__main__':
        drop_db()
        init_db()
    

    SQLALchemy不同于Django的ORM,当创建多对多关联事,不会自动创建第三张表,需要我们自己定义关系表,进行关联

    b. 操作数据库表

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    from sqlalchemy.orm import sessionmaker
    from sqlalchemy import create_engine
    from models import Users
      
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
    Session = sessionmaker(bind=engine)    #创建Session类
      
    # 每次执行数据库操作时,都需要创建一个session
    session = Session()    # 创建session对象:
      
    # ############# 执行ORM操作 #############
    # 创建新User对象
    obj1 = Users(name="alex1")    
    # 添加到session:
    session.add(obj1)
    # 提交即保存到数据库:
    session.commit()
    # 关闭session
    session.close()
    

     

    c.通过原生SQL语句执行

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import time
    import threading
    
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
    from sqlalchemy.orm import sessionmaker, relationship
    from sqlalchemy import create_engine
    from sqlalchemy.sql import text
    from sqlalchemy.engine.result import ResultProxy
    from db import Users, Hosts
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
    Session = sessionmaker(bind=engine)
    
    session = Session()
    
    # 查询
    # cursor = session.execute('select * from users')
    # result = cursor.fetchall()
    
    # 添加
    cursor = session.execute('insert into users(name) values(:value)',params={"value":'hc'})
    # 注意占位符和传参的形式
    session.commit()
    print(cursor.lastrowid)
    
    session.close()
    
    原生SQL语句
    View Code

     

    d.基本增删改查示例

    https://www.keakon.net/2012/12/03/SQLAlchemy使用经验

    import time
    import threading
    
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
    from sqlalchemy.orm import sessionmaker, relationship
    from sqlalchemy import create_engine
    from sqlalchemy.sql import text
    
    from db import Users, Hosts
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
    Session = sessionmaker(bind=engine)
    
    session = Session()
    
    # ################ 添加 ################
    
    obj1 = Users(name="hc")
    session.add(obj1)   #添加一个对象
    
    session.add_all([
        Users(name="hc"),
        Users(name="alex"),
        Hosts(name="c1.com"),
    ])      #添加多个对象
    session.commit()
    
    
    # ################ 删除 ################
    
    # filter是where条件,最后调用one()或first()返回唯一行,如果调用all()则返回所有行
    session.query(Users).filter(Users.id > 2).delete()  #删除Users表中id大于2的数据
    session.commit()
    
    # ################ 修改 ################
    
    session.query(Users).filter(Users.id > 0).update({"name" : "099"})  # 将Users表中id>0的数据,把name字段改为099
    # 更新user表中id大于2的name列,在原字符串后边增加099
    session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False)    #synchronize_session设置为False即执行字符串拼接
    # 更新user表中id大于2的num列,使最终值在原来数值基础上加1
    session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate")    #synchronize_session设置为evaluate即执行四则运算
    
    session.commit()
    
    # ################ 查询 ################
    
    r1 = session.query(Users).all()
    r2 = session.query(Users.name.label('xx'), Users.age).all()     #label 取别名的,即在查询结果中,显示name的别名'xx'
    r3 = session.query(Users).filter(Users.name == "alex").one()    # one()返回唯一行,类似于django的get,如果返回数据为多个则报错
    r3 = session.query(Users).filter(Users.name == "alex").all()    # all()获取所有数据
    r4 = session.query(Users).filter_by(name='alex').all()          # 注意filter和filter_by后面括号内条件的写法
    r5 = session.query(Users).filter_by(name='alex').first()        # first()获取返回数据的第一行
    r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all()  
    #order_by后面还可以.desc()降序排列,默认为.asc()升序排列
    # text(自定义条件,:的功能类似%s占位),params中进行传参
    r7 = session.query(Users).from_statement(text("SELECT * FROM Hosts where name=:name")).params(name='ed').all()
    # text中还能从另一个表中查询,前面要用from_statement,而不是filter
    
    
    session.close()

    当我们使用in_查询时,如果进行删除会更新,会出现如下错误

    InvalidRequestError: Could not evaluate current criteria in Python. Specify 'fetch' or False for the synchronize_session parameter.

    解决办法:加上 synchronize_session=False

    https://segmentfault.com/q/1010000000130368

      

    e.基于relationship操作ForeignKey

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import time
    import threading
    
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
    from sqlalchemy.orm import sessionmaker, relationship
    from sqlalchemy import create_engine
    from sqlalchemy.sql import text
    from sqlalchemy.engine.result import ResultProxy
    from db import Users, Hosts, Hobby, Person
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
    Session = sessionmaker(bind=engine)
    session = Session()
    # 添加
    """
    session.add_all([
        Hobby(caption='乒乓球'),
        Hobby(caption='羽毛球'),
        Person(name='张三', hobby_id=3),
        Person(name='李四', hobby_id=4),
    ])
    
    person = Person(name='张九', hobby=Hobby(caption='姑娘'))
    session.add(person)
    
    hb = Hobby(caption='人妖')
    hb.pers = [Person(name='文飞'), Person(name='博雅')]
    session.add(hb)     #  会同时创建3条数据(1条hobby的数据,2条person的数据)
    
    session.commit()
    """
    
    # 使用relationship正向查询
    """
    v = session.query(Person).first()
    print(v.name)
    print(v.hobby.caption)
    """
    
    # 使用relationship反向查询
    """
    v = session.query(Hobby).first()
    print(v.caption)
    print(v.pers)
    """
    
    session.close()
    

    f.基于relationship操作m2m

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import time
    import threading
    
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
    from sqlalchemy.orm import sessionmaker, relationship
    from sqlalchemy import create_engine
    from sqlalchemy.sql import text
    from sqlalchemy.engine.result import ResultProxy
    from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
    Session = sessionmaker(bind=engine)
    session = Session()
    # 添加
    """
    session.add_all([
        Server(hostname='c1.com'),
        Server(hostname='c2.com'),
        Group(name='A组'),
        Group(name='B组'),
    ])
    session.commit()
    
    s2g = Server2Group(server_id=1, group_id=1)
    session.add(s2g)
    session.commit()
    
    
    gp = Group(name='C组')
    gp.servers = [Server(hostname='c3.com'),Server(hostname='c4.com')]
    session.add(gp)
    session.commit()
    
    
    ser = Server(hostname='c6.com')
    ser.groups = [Group(name='F组'),Group(name='G组')]
    session.add(ser)
    session.commit()
    """
    
    
    # 使用relationship正向查询
    """
    v = session.query(Group).first()
    print(v.name)
    print(v.servers)
    """
    
    # 使用relationship反向查询
    """
    v = session.query(Server).first()
    print(v.hostname)
    print(v.groups)
    """
    
    
    session.close()
    
    基于relationship操作m2m
    View Code

    g.进阶操作

    in_、notin_、and、or、like、limit、排序、分组、连表、组合

    # 条件
    ret = session.query(Users).filter_by(name='alex').all() #
    ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all() # 且的关系
    ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
    ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
    ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() # ~表示非。就是not in的意思
    ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() # 联表查询
    from sqlalchemy import and_, or_   # 且和or的关系
    ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() # 条件以and方式排列
    ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all() # 条件以or方式排列
    ret = session.query(Users).filter(
        or_( #这部分表示括号中的条件都以or的形式匹配
            Users.id < 2, # 或者 or User.id < 2
            and_(Users.name == 'eric', Users.id > 3),# 表示括号中这部分进行and匹配
            Users.extra != ""
        )).all()
     
     
    # 通配符
    ret = session.query(Users).filter(Users.name.like('e%')).all()
    ret = session.query(Users).filter(~Users.name.like('e%')).all() # 表示not like
     
    # 限制 limit用法
    ret = session.query(Users)[1:2] # 等于limit ,具体功能需要自己测试
     
    # 排序
    ret = session.query(Users).order_by(Users.name.desc()).all()
    ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 按照name从大到小排列,如果name相同,按照id从小到大排列
     
    # 分组
    from sqlalchemy.sql import func
     
    ret = session.query(Users).group_by(Users.extra).all()
    ret = session.query(
        func.max(Users.id),
        func.sum(Users.id),
        func.min(Users.id)).group_by(Users.name).all()
     
    ret = session.query(
        func.max(Users.id),
        func.sum(Users.id),
        func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # having对聚合的内容再次进行过滤
     
    # 连表
     
    ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()
     
    ret = session.query(Person).join(Favor).all()
    # 默认是inner join
    ret = session.query(Person).join(Favor, isouter=True).all() # isouter表示是left join
     
    # 组合
    q1 = session.query(Users.name).filter(Users.id > 2)
    q2 = session.query(Favor.caption).filter(Favor.nid < 2)
    ret = q1.union(q2).all() #union默认会去重
     
    q1 = session.query(Users.name).filter(Users.id > 2)
    q2 = session.query(Favor.caption).filter(Favor.nid < 2)
    ret = q1.union_all(q2).all() # union_all不去重

     去重

    https://segmentfault.com/a/1190000006949536

     关联子查询

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import time
    import threading
    
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
    from sqlalchemy.orm import sessionmaker, relationship
    from sqlalchemy import create_engine
    from sqlalchemy.sql import text, func
    from sqlalchemy.engine.result import ResultProxy
    from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
    Session = sessionmaker(bind=engine)
    session = Session()
    
    # 关联子查询
    subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar()
    result = session.query(Group.name, subqry)
    """
    SELECT `group`.name AS group_name, (SELECT count(server.id) AS sid 
    FROM server 
    WHERE server.id = `group`.id) AS anon_1 
    FROM `group`
    """
    
    
    # 原生SQL
    """
    # 查询
    cursor = session.execute('select * from users')
    result = cursor.fetchall()
    
    # 添加
    cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'})
    session.commit()
    print(cursor.lastrowid)
    """
    
    session.close()
    View Code
            子查询:
                session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
                """
                select * from users where id in (select id from xxx)
                """
            
            
                subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar()
                #第一步:  session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id)
                #这句的sql语句为 select count(id) as sid from server where server.id = group.id      如果直接运行,则会报错
                # 第二步:.correlate(Group).as_scalar() ==> 代表此时不执行查询操作,将其当作条件,在group表中查询时,才执行查询
                
                        
                result = session.query(Group.name, subqry)
                # sql语句为:select group.name  subqry  from group
                #第三步:将subqry替换为上面的条件,则此句的SQL为:
                #    select group.name,(select count(id) as sid from server where server.id = group.id) as xx  from group
    class User(db.Model):
        __tablename__ = "user"
        id = db.Column(db.Integer, primary_key=True)  
        name = db.Column(db.String(100), unique=True, nullable=False)  
        pwd = db.Column(db.String(100), nullable=False) 
        role_id = db.Column(db.Integer, default=0) 
        email = db.Column(db.String(100), nullable=True)  
        addtime = db.Column(db.DateTime, index=True, default=datetime.now)  
        is_active = db.Column(db.Boolean, default=True) 
        uid = db.Column(db.String(24), nullable=False, default=uuid, unique=True, server_default=uuid())
    
    class Userlog(db.Model):
        __tablename__ = "userlog"
        id = db.Column(db.Integer, primary_key=True) 
        user_id = db.Column(db.Integer, default=0) db.ForeignKey('user.id')
        ip = db.Column(db.String(100)) 
        addtime = db.Column(db.DateTime, index=True, default=datetime.now)  

    orm语句

    subqry = db.session.query(Userlog).order_by(Userlog.id.desc()).subquery()
            s = aliased(Userlog,subqry)
            rs = db.session.query(User, s.ip.label('last_ip'), s.addtime.label('last_time')).outerjoin(s,
                                                                                                       User.id == s.user_id).group_by(
                s.user_id)
    print rs

    对应的sql语句

    SELECT user.id AS user_id, user.name AS user_name, user.pwd AS user_pwd, user.role_id AS user_role_id, user.email AS user_email, user.addtime AS user_addtime, user.is_active AS user_is_active, user.uid AS user_uid, anon_1.ip AS last_ip, anon_1.addtime AS last_time 
    FROM user LEFT OUTER JOIN (SELECT userlog.id AS id, userlog.user_id AS user_id, userlog.ip AS ip, userlog.addtime AS addtime 
    FROM userlog ORDER BY userlog.id DESC) AS anon_1 ON user.id = anon_1.user_id GROUP BY anon_1.user_id

    点击

    1.多条件组合,可以用and_,or_实现。最外层时,and_可以省略,默认用逗号分开条件。

    db.session.query(User).filter(
            and_(
                or_(User.name==name1,User.name==name2),
                or_(User.status==1,User.status==2)
            ),
            User.active==1
        ).first()

    2.动态组合条件。针对不同的场景,可能需要不同的查询条件,类似动态的拼接SQL 语句。

            if filter_type == 1:
                search = and_(GameRoom.status ==1,or_(
                    and_(GameRoom.white_user_id == user_id,
                         GameRoom.active_player == 1),
                    and_(GameRoom.black_user_id == user_id,
                         GameRoom.active_player == 0)))
            elif filter_type == 2:
                search = and_(GameRoom.status ==1,or_(
                    and_(GameRoom.white_user_id == user_id,
                         GameRoom.active_player == 0),
                    and_(GameRoom.black_user_id == user_id,
                         GameRoom.active_player == 1)))
            elif filter_type == 3:
                search = GameRoom.create_by == user_id
            
            db.session.query(GameRoom).filter(search).all()

    3.关联查询。对应SQL的join和left join等。

        session.query(User, Address).filter(User.id == Address.user_id).all()
        session.query(User).join(User.addresses).all()
        session.query(User).outerjoin(User.addresses).all()

    4.使用别名用aliased,aliased在orm包中。当要对同一个表使用多次关联时,可能需要用到别名。同时,如果查询的结果有多个同名的字段,可以使用label重命名。

    black_user = orm.aliased(User)
    white_user = orm.aliased(User)
    db.session.query(
                GameRoom,
                black_user.score.label("black_score"),
                white_user.score.label("white_score")
                ).outerjoin(black_user,GameRoom.black_user_id==black_user.user_id).outerjoin(
                    white_user,GameRoom.white_user_id==white_user.user_id).filter(
                        GameRoom.id==room_id
                ).all()

    5.聚合查询和使用数据库函数。func可以调用各种聚合函数,和当前数据库支持的其它函数。

    session.query(User.name, func.count('*').label("user_count")).group_by(User.name).all()
    
    session.query(User.name, func.sum(User.id).label("user_id_sum")).filter(func.to_days(User.create_date)==func.to_days(func.now())).group_by(User.name).all()

    6.子查询

    stmt = db.session.query(Address.user_id, func.count('*').label("address_count")).group_by(Address.user_id).subquery()
    db.session.query(User, stmt.c.address_count).outerjoin((stmt, User.id == stmt.c.user_id)).order_by(User.id).all()

    7.直接运行SQL语句查询。如果查询实在太复杂,觉得用SQLAlchemy查询方式很难实现,或者要通过存储过程实现查询,可以让SQLAlchemy直接运行SQL语句返回结果。

            sql ="""select b.user_id,b.user_name,b.icon,b.score,a.add_score from
                (select user_id, sum(score_new - score_old) as add_score from user_score_log
                where year(create_date)=year(now()) and month(create_date)=month(now())
                group by user_id) a join users b on a.user_id=b.user_id
                order by a.add_score desc limit 50"""
            list_top = db.session.execute(sql).fetchall()

    8.分页查询。sqlalchemy中分页用到pagination,先不说性能怎么样,使用起来是真的非常方便。

            pagination = GameMessage.query.filter(GameMessage.game_id==game_id).
                order_by(GameMessage.id.desc()).
                paginate(page, per_page=20, error_out=True)
            pages = pagination.pages
            total = pagination.total
            items = pagination.items

     h.session对象如何实现线程安全?

    session有两种创建方式

    方式一:

    from sqlalchemy.orm import sessionmaker
    from sqlalchemy import create_engine
    
    engine = create_engine(
        "mysql+pymysql://root:123@47.93.4.198:3306/s6?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    )
    Session = sessionmaker(bind=engine)
    
    # 方式一:
    # 由于无法提供线程共享功能,所有在开发时要注意,在每个线程中自己创建 session。
    #  from sqlalchemy.orm.session import Session
    #         具有操作数据库的:'close', 'commit', 'connection', 'delete', 'execute', 'expire',.....
    session = Session()     # 创建普通的session
    print('原生session',session)
    # 操作数据库
    session.close()

    由于无法提供线程共享功能,所有在开发时要注意,在每个线程中自己创建 session
    解决办法如下:
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import time
    import threading
    
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
    from sqlalchemy.orm import sessionmaker, relationship
    from sqlalchemy import create_engine
    from db import Users
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
    Session = sessionmaker(bind=engine)
    
    
    def task(arg):
        session = Session()
    
        obj1 = Users(name="alex1")
        session.add(obj1)
    
        session.commit()
    
    
    for i in range(10):
        t = threading.Thread(target=task, args=(i,))
        t.start()
    多线程执行示例

    方式二(推荐):

    from sqlalchemy.orm import sessionmaker
    from sqlalchemy import create_engine
    from sqlalchemy.orm import scoped_session
    
    engine = create_engine(
        "mysql+pymysql://root:123@47.93.4.198:3306/s6?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    )
    Session = sessionmaker(bind=engine)
    
    # 方式二:支持线程安全,自动为每个线程创建一个session,单线程时,只创建一个
    #               - threading.Local
    #               - 唯一标识
    # ScopedSession对象
    #       self.registry(), 加括号 创建session
    #       self.registry(), 加括号 创建session
    #       self.registry(), 加括号 创建session
    from greenlet import getcurrent as get_ident #本地线程的唯一标识的函数,加括号则执行函数
    session = scoped_session(Session,get_ident)
    # session.add
    # 操作数据库
    session.remove()
    支持线程安全,自动为每个线程创建一个session,单线程时,只创建一个

    I.sqlalchemy-utils给SqlAlchemy提供choice功能

    SqlAlchemy本身没有chocie,需要安装这个才能提供choice功能

    pip install sqlalchemy-utils
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column,Integer,String
    from sqlalchemy_utils import ChoiceType
    from sqlalchemy import create_engine
    
    Base = declarative_base()
    class User(Base):
        __tablename__ = 'users'
        type_choices=(
            (1,'北京'),
            (2,'上海'),
            )
        id = Column(Integer, primary_key=True)  #必须要有主键
        name =Column(String(64))
        types=Column(ChoiceType(type_choices,Integer()))    # 注意:Integer后面要有括号
    
        __table_args__ = {
            'mysql_engine': 'InnoDB',
            'mysql_charset': 'utf8'
        }
    
    def init_db():
        """
        根据类创建数据库表
        :return:
        """
        engine = create_engine(
            "mysql+pymysql://root:123@127.0.0.1:3306/db1?charset=utf8",
            max_overflow=0,  # 超过连接池大小外最多创建的连接
            pool_size=5,  # 连接池大小
            pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
            pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
        )
    
        Base.metadata.create_all(engine)
    
    
    def drop_db():
        """
        根据类删除数据库表
        :return:
        """
        engine = create_engine(
            "mysql+pymysql://root:123@127.0.0.1:3306/db1?charset=utf8",
            max_overflow=0,  # 超过连接池大小外最多创建的连接
            pool_size=5,  # 连接池大小
            pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
            pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
        )
    
        Base.metadata.drop_all(engine)
    
    
    if __name__ == '__main__':
        drop_db()
        init_db()
    建表
    #! /usr/bin/env python
    # -*- coding: utf-8 -*-
    # __author__ = "HuChong"
    # Date: 2018/1/12
    
    from sqlalchemy.orm import sessionmaker
    from sqlalchemy import create_engine
    from ru import User
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/db1", max_overflow=0, pool_size=5)
    Session = sessionmaker(bind=engine)
    
    session = Session()
    
    obj1 = User(name="xz",types=1)
    obj2 = User(name="zz",types=2)
    session.add_all([obj1,obj2])
    session.commit()
    session.close()
    插入数据
    #! /usr/bin/env python
    # -*- coding: utf-8 -*-
    # __author__ = "HuChong"
    # Date: 2018/1/12
    
    from sqlalchemy.orm import sessionmaker
    from sqlalchemy import create_engine
    from ru import User
    
    engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/db1", max_overflow=0, pool_size=5)
    Session = sessionmaker(bind=engine)
    
    session = Session()
    
    result_list=session.query(User).all()
    print(result_list)
    for item in result_list:
        print(item.types)
        print(item.types.code,item.types.value)
    
    session.close()
    
    
    #######打印结果如下########
    '''
    [<ru.User object at 0x0386D770>, <ru.User object at 0x0386D7D0>]
    Choice(code=1, value=北京)
    1 北京
    Choice(code=2, value=上海)
    2 上海
    '''
    获取值

    三、Flask-SQLAlchemy及Flask-Migrate组件

    1.Flask-SQLAlchemy

      用于将Flask和SQLAlchemy联系起来,使用之前需要装下面这个模块

    pip install flask-sqlalchemy

    如果使用Flask-sqlalchemy组件,则在使用时有一点变化

    # 1. 引入Flask-SQLAlchemy
    from flask_sqlalchemy import SQLAlchemy
    db = SQLAlchemy()    #实例化SQLAlchemy对象
    # 2. 注册 Flask-SQLAlchemy
        # SQLAlchemy(app)
        # 由于这个对象在其他地方想要使用,所有用以下方式注册 
        db.init_app(app) #读取配置文件,配置文件中写以前在create_engine里面的链接数据
    #settings.py中,加上配置

    SQLALCHEMY_DATABASE_URI = "mysql+pymysql://root:123@47.93.4.198:3306/s6?charset=utf8"
    SQLALCHEMY_POOL_SIZE = 2
    SQLALCHEMY_POOL_TIMEOUT = 30
    SQLALCHEMY_POOL_RECYCLE = -1

    # 追踪对象的修改并且发送信号
    SQLALCHEMY_TRACK_MODIFICATIONS = False

    # 3. 导入models中的表
    from .models import *
    from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
    from app import db
    
    # 4. 写类继承db.Model
    class Users(db.Model):  #再不是继承Base,而且继承db.Model
        __tablename__ = 'users'
    
        id = Column(Integer, primary_key=True)
        name = Column(String(32), index=True, nullable=False)
        pwd = Column(String(32))
    
        __table_args__ = {
            'mysql_engine': 'InnoDB',   # 指定表的引擎
            'mysql_charset': 'utf8'     # 指定表的编码格式
        }
    
    
    class Group(db.Model):
        __tablename__ = 'group'
    
        id = Column(Integer, primary_key=True)
        name = Column(String(32), index=True, nullable=False)
    
        __table_args__ = {
            'mysql_engine': 'InnoDB',
            'mysql_charset': 'utf8'
        }
    # 5. 创建和删除表
      #  以后执行db.create_all()
      #  以后执行db.drop_all()
    但是这样不好,我们引入 Flask-Migrate

    2.Flask-Migrate

    可以通过类似Django里的命令,进行数据迁移,创建表,删除表,更新表

    安装  pip install Flask-Migrate
    # 5.1 导入
    from flask_migrate import Migrate, MigrateCommand
    from app import create_app, db
    
    app = create_app()
    manager = Manager(app)
    # 5.2 创建migrate实例
    migrate = Migrate(app, db)
    #执行命令:
        初次:python manage.py db init
        
        python manage.py db migrate
        python manage.py db upgrade
    以后执行SQL时:
        方式一:
            result = db.session.query(models.User.id,models.User.name).all()
            db.session.remove()
        方式二:
            result = models.Users.query.all()

     3.代码规范之生成requestments.txt文件

    pip  freeze  # 获取环境中所有安装的模块以及其对应的版本
            
    pip  freeze > requirements.txt  # 生成对应的文本文件

    由于获取的是所有,我们还得自己手动在文本里删除一些不必要的,所有这个方法不好,我们使用下面的方法

     pip install pipreqs

    首先安装模块,安装完成以后,我们就可以在终端,执行pipreqs命令

    # 获取当前所在程序目录中涉及到的所有模块,并自动生成 requirements.txt 且写入内容。
     pipreqs ./

    建议在Linux系统下使用,windows环境下会报错

    以后使用别人的程序,进入程序目录:

    安装requirements.txt依赖
    pip install -r requirements.txt

    会自动安装文件里,所有对应版本模块

    https://segmentfault.com/a/1190000003050954

    http://www.cnblogs.com/huchong/p/8797516.html

    http://docs.jinkan.org/docs/flask/patterns/sqlalchemy.html

    SQLAlchemy外键和关系

    http://www.codexiu.cn/python/SQLAlchemy%E5%9F%BA%E7%A1%80%E6%95%99%E7%A8%8B/73/530/

     lazy的用法

     http://shomy.top/2016/08/11/flask-sqlalchemy-relation-lazy/

  • 相关阅读:
    平时工作需要用到的adb命令(二)
    计算Android总的内存使用率、CPU使用率和CPU实时主频率
    使用ADB命令写Android自动化测试脚本
    adb常见命令
    Jmeter的安装配置
    SQL Server优化之SQL语句优化
    单例模式——懒汉模式,饿汉模式
    GIT和SVN的区别(面试)
    python zipfile文件名乱码问题
    企业微信给用户发送消息
  • 原文地址:https://www.cnblogs.com/huchong/p/8274510.html
Copyright © 2011-2022 走看看