简介
状态机制是iptables中特殊的一部分,其实它不应该叫状态机制,因为它只是一种连接跟踪机制。但 是,很多人都认可状态机制这个名字。文中我也或多或或少地用这个名字来表示和连接跟踪相同的意思。这 不应该引起什么混乱的。连接跟踪可以让Netfilter知道某个特定连接的状态。运行连接跟踪的防火墙称作 带有状态机制的防火墙,以下简称为状态防火墙。状态防火墙比非状态防火墙要安全,因为它允许我们编写 更严密的规则。
在iptables里,包是和被跟踪连接的四种不同状态有关的。它们是NEW,ESTABLISHED,RELATED和INVALID。 后面我们会深入地讨论每一个状态。使用--state匹配操作,我们能很容易地控制 “谁或什么能发起新的会话”。
所有在内核中由Netfilter的特定框架做的连接跟踪称作conntrack(译者注:就是connection tracking 的首字母缩写)。conntrack可以作为模块安装,也可以作为内核的一部分。大部分情况下,我们想要,也 需要更详细的连接跟踪,这是相比于缺省的conntrack而言。也因为此,conntrack中有许多用来处理TCP, UDP或ICMP协议的部件。这些模块从数据包中提取详细的、唯一的信息,因此能保持对每一个数据流的跟 踪。这些信息也告知conntrack流当前的状态。例如,UDP流一般由他们的目的地址、源地址、目的端口和源 端口唯一确定。
在以前的内核里,我们可以打开或关闭重组功能。然而,自从iptables和Netfilter,尤其是连接跟踪被 引入内核,这个选项就被取消了。因为没有包的重组,连接跟踪就不能正常工作。现在重组已经整合入 conntrack,并且在conntrack启动时自动启动。不要关闭重组功能,除非你要关闭连接跟踪。
除了本地产生的包由OUTPUT链处理外,所有连接跟踪都是在PREROUTING链里进行处理的,意思就是, iptables会在PREROUTING链里从新计算所有的状态。如果我们发送一个流的初始化包,状态就会在OUTPUT链 里被设置为NEW,当我们收到回应的包时,状态就会在PREROUTING链里被设置为ESTABLISHED。如果第一个包不是本地产生的,那就会在PREROUTING链里被设置为NEW状 态。综上,所有状态的改变和计算都是在nat表中的PREROUTING链和OUTPUT链里完成的。
conntrack记录
我们先来看看怎样阅读/proc/net/ip_conntrack里的conntrack记录。这些记 录表示的是当前被跟踪的连接。如果安装了ip_conntrack模块,cat /proc/net/ip_conntrack 的显示类似:
tcp 6 117 SYN_SENT src=192.168.1.6 dst=192.168.1.9 sport=32775
dport=22 [UNREPLIED] src=192.168.1.9 dst=192.168.1.6 sport=22
dport=32775 use=2
conntrack模块维护的所有信息都包含在这个例子中了,通过它们就可以知道某个特定的连接处于什么状 态。首先显示的是协议,这里是tcp,接着是十进制的6(译者注:tcp的协议类型代码是6)。之后的117是 这条conntrack记录的生存时间,它会有规律地被消耗,直到收到这个连接的更多的包。那时,这个值就会 被设为当时那个状态的缺省值。接下来的是这个连接在当前时间点的状态。上面的例子说明这个包处在状态 SYN_SENT,这个值是iptables显示的,以便我们好理解,而内部用的值稍有不同。SYN_SENT说明我们正在观 察的这个连接只在一个方向发送了一TCP SYN包。再下面是源地址、目的地址、源端口和目的端口。其 中有个特殊的词UNREPLIED,说明这个连接还没有收到任何回应。最后,是希望接收的应答包的信息,他们 的地址和端口和前面是相反的。
连接跟踪记录的信息依据IP所包含的协议不同而不同,所有相应的值都是在头文件linux/include/netfilter-ipv4/ip_conntrack*.h中定义的。IP、TCP、UDP、ICMP协 议的缺省值是在linux/include/netfilter-ipv4/ip_conntrack.h里定义的。具 体的值可以查看相应的协议,但我们这里用不到它们,因为它们大都只在conntrack内部使用。随着状态的 改变,生存时间也会改变。
当一个连接在两个方向上都有传输时,conntrack记录就删除[UNREPLIED]标志,然后重置。在末尾有 [ASSURED]的记录说明两个方向已没有流量。这样的记录是确定的,在连接跟踪表满时,是不会被删除的, 没有[ASSURED]的记录就要被删除。连接跟踪表能容纳多少记录是被一个变量控制的,它可由内核中的ip- sysctl函数设置。默认值取决于你的内存大小,128MB可以包含8192条目录,256MB是16376条。你也可以在 /proc/sys/net/ipv4/ip_conntrack_max里查看、设置。
连接跟踪具体分析
TCP
一个TCP连接是经过三次握手协商连接信息才建立起来的。整个会话由一个SYN包开始,然后是一个 SYN/ACK包,最后是一个ACK包,此时,会话才建立成功,能够发送数据。最大的问题在于连接跟踪怎样控制 这个过程。其实非常简单。
默认情况下,连接跟踪基本上对所有的连接类型做同样的操作。看看下面的图片,我们就能明白在连接 的不同阶段,流是处于什么状态的。就如你看到的,连接跟踪的代码不是从用户的观点来看待TCP连接建立 的流程的。连接跟踪一看到SYN包,就认为这个连接是NEW状态,一看到返回的SYN/ACK包,就认为连接是 ESTABLISHED状态。如果你仔细想想第二步,应该能理解为什么。有了这个特殊处理,NEW和ESTABLISHED包 就可以发送出本地网络,且只有ESTABLISHED的连接才能有回应信息。如果把整个建立连接的过程中传输的 数据包都看作NEW,那么三次握手所用的包都是NEW状态的,这样我们就不能阻塞从外部到本地网络的连接 了。因为即使连接是从外向内的,但它使用的包也是NEW状态的,而且为了其他连接能正常传输,我们不得 不允许NEW状态的包返回并进入防火墙。更复杂的是,针对TCP连接内核使用了很多内部状态,它们的定义在 RFC 793 - Transmission Control Protocol的21-23页。但好在我们在用 户空间用不到。后面我们会详细地介绍这些内容。
正如你看到的,以用户的观点来看,这是很简单的。但是,从内核的角度看这一块还有点困难的。我们 来看一个例子。认真考虑一下在/proc/net/ip_conntrack里,连接的状态是如何 改变的。
tcp 6 117 SYN_SENT src=192.168.1.5 dst=192.168.1.35 sport=1031
dport=23 [UNREPLIED] src=192.168.1.35 dst=192.168.1.5 sport=23
dport=1031 use=1
从上面的记录可以看出,SYN_SENT状态被设置了,这说明连接已经发出一个SYN包,但应答还没发送过 来,这可从[UNREPLIED]标志看出。
tcp 6 57 SYN_RECV src=192.168.1.5 dst=192.168.1.35 sport=1031
dport=23 src=192.168.1.35 dst=192.168.1.5 sport=23 dport=1031
use=1
现在我们已经收到了相应的SYN/ACK包,状态也变为SYN_RECV,这说明最初发出的SYN包已正确传输,并 且SYN/ACK包也到达了防火墙。 这就意味着在连接的两方都有数据传输,因此可以认为两个方向都有相应的 回应。当然,这是假设的。
tcp 6 431999 ESTABLISHED src=192.168.1.5 dst=192.168.1.35
sport=1031 dport=23 src=192.168.1.35 dst=192.168.1.5
sport=23 dport=1031 use=1
现在我们发出了三步握手的最后一个包,即ACK包,连接也就进入ESTABLISHED状态了。再传输几个数据 包,连接就是[ASSURED]的了。
下面介绍TCP连接在关闭过程中的状态。
如上图,在发出最后一个ACK包之前,连接(指两个方向)是不会关闭的。注意,这只是针对一般的情 况。连接也可以通过发送关闭,这用在拒绝一个连接的时候。在RST包发送之后,要经过预先设定的一段时 间,连接才能断掉。
连接关闭后,进入TIME_WAIT状态,缺省时间是2分钟。之所以留这个时间,是为了让数据包能完全通过 各种规则的检查,也是为了数据包能通过拥挤的路由器,从而到达目的地。
UDP
UDP连接是无状态的,因为它没有任何的连接建立和关闭过程,而且大部分是无序列号的。以某个顺序收 到的两个数据包是无法确定它们的发出顺序的。但内核仍然可以对UDP连接设置状态。我们来看看是如何跟 踪UDP连接的,以及conntrack的相关记录。
从上图可以看出,以用户的角度考虑,UDP连接的建立几乎与TCP的一样。虽然conntrack信息看起来有点 儿不同,但本质上是一样的。下面我们先来看看第一个UDP包发出后的conntrack记录。
udp 17 20 src=192.168.1.2 dst=192.168.1.5 sport=137 dport=1025
[UNREPLIED] src=192.168.1.5 dst=192.168.1.2 sport=1025
dport=137 use=1
从前两个值可知,这是一个UDP包。第一个是协议名称,第二个是协议号,第三个是此状态的生存时间, 默认是30秒。接下来是包的源、目地址和端口,还有期待之中回应包的源、目地址和端口。[UNREPLIED]标 记说明还未收到回应。
udp 17 170 src=192.168.1.2 dst=192.168.1.5 sport=137
dport=1025 src=192.168.1.5 dst=192.168.1.2 sport=1025
dport=137 use=1
一旦收到第一个包的回应,[UNREPLIED]标记就会被删除,连接就被认为是ESTABLISHED的,但在记录里 并不显示ESTABLISHED标记。相应地,状态的超时时间也变为180秒了。在本例中,只剩170秒了,10秒后, 就会减少为160秒。有个东西是不可少的,虽然它可能会有些变化,就是前面提过的[ASSURED]。要想变为 [ASSURED]状态,连接上必须要再有些流量。
udp 17 175 src=192.168.1.5 dst=195.22.79.2 sport=1025
dport=53 src=195.22.79.2 dst=192.168.1.5 sport=53
dport=1025 [ASSURED] use=1
可以看出来,[ASSURED]状态的记录和前面的没有多大差别,除了标记由[UNREPLIED]变成[ASSURED]。如 果这个连接持续不了180秒,那就要被中断。180秒是短了点儿,但对大部分应用足够了。只要遇到这个连接 的包穿过防火墙,超时值就会被重置为默认值,所有的状态都是这样的。
ICMP
ICMP也是一种无状态协议,它只是用来控制而不是建立连接。ICMP包有很多类型,但只有四种类型有应 答包,它们是回显请求和应答(Echo request and reply),时间戳请求和应答(Timestamp request and reply),信息请求和应答(Information request and reply),还有地址掩码请求和应答(Address mask request and reply),这些包有两种状态,NEW和ESTABLISHED 。时间戳请求和信息请求已经废除不用了,回显请求还是常用的,比如ping命令就用的到,地址掩码请 求不太常用,但是可能有时很有用并且值得使用。看看下面的图,就可以大致了解ICMP连接的NEW和ESTABLISHED状态了。
如图所示,主机向目标发送一个回显请求,防火墙就认为这个包处于NEW状态。 目标回应一个回显应答,防火墙就认为包处于ESTABLISHED了。当回显请求被发送 时,ip_conntrack里就有这样的记录了:
icmp 1 25 src=192.168.1.6 dst=192.168.1.10 type=8 code=0
id=33029 [UNREPLIED] src=192.168.1.10 dst=192.168.1.6
type=0 code=0 id=33029 use=1
可以看到,ICMP的记录和TCP、UDP的有点区别,协议名称、超时时间和源、目地址都一样,不同之处在 于没有了端口,而新增了三个新的字段:type,code和id。字段type说明ICMP的类型。code说明ICMP的代 码,这些代码在附录ICMP类型里有说明。id是ICMP包的ID。每个ICMP包被发送时都被分配一个ID,接受方把同样的ID 分配给应答包,这样发送方能认出是哪个请求的应答。
[UNREPLIED]的含义和前面一样,说明数的传输只发生在一个方向上,也就是说未收到应答。再往后,是 应答包的源、目地址,还有相应的三个新字段,要注意的是type和code是随着应答包的不同而变化的,id和 请求包的一样。
和前面一样,应答包被认为是ESTABLISHED的。然而,在应答包之后,这个ICMP 连接就不再有数据传输了。所以,一旦应答包穿过防火墙,ICMP的连接跟踪记录就被销毁了。
以上各种情况,请求被认为NEW,应答是ESTABLISHED。 换句话说,就是当防火墙看到一个请求包时,就认为连接处于NEW状态,当有应答 时,就是ESTABLISHED状态。
ICMP的缺省超时是30秒,可以在/proc/sys/net/ipv4/netfilter/ip_ct_icmp_timeout中修改。这个值是比较合适 的,适合于大多数情况。
ICMP的另一个非常重要的作用是,告诉UDP、TCP连接或正在努力建立的连接发生了什么,这时ICMP应答 被认为是RELATED的。主机不可达和网络不可达就是这样的例子。当试图连接某台机 子不成功时(可能那台机子被关上了),数据包所到达的最后一台路由器就会返回以上的ICMP信息,它们就 是RELATED的,如下图:
我们发送了一个SYN包到某一地址,防火墙认为它的状态是NEW。但是,目标网络 有问题不可达,路由器就会返回网络不可达的信息,这是RELATED的。连接跟踪会认 出这个错误信息是哪个连接的,连接会中断,同时相应的记录删除会被删除。
当UDP连接遇到问题时,同样会有相应的ICMP信息返回,当然它们的状态也是RELATED ,如下图:
我们发送一个UDP包,当然它是NEW的。但是,目标网络被一些防火墙或路由器所 禁止。我们的防火墙就会收到网络被禁止的信息。防火墙知道它是和哪个已打开的UDP连接相关的,并且把 这个信息(状态是RELATED)发给它,同时,把相应的记录删除。客户机收到网络被 禁止的信息,连接将被中断。
缺省的连接操作
有时,conntrack机制并不知道如何处理某个特殊的协议,尤其是在它不了解这个协议或不知道协议如何 工作时,比如,NETBLT,MUX还有EGP。这种情况下,conntrack使用缺省的操作。这种操作很象对UDP连接的 操作,就是第一个包被认作NEW,其后的应答包等等数据都是 ESTABLISHED。
使用缺省操作的包的超时值都是一样的,600秒,也就是10分钟。当然,这个值可以通过/proc/sys/net/ipv4/netfilter/ip_ct_generic_timeout更改,以便适应你的通信 量,尤其是在耗时较多、流量巨大的情况下,比如使用卫星等。
复杂协议和连接跟踪
有些协议比其他协议更复杂,这里复杂的意思是指连接跟踪机制很难正确地跟踪它们,比如,ICQ、IRC 和FTP,它们都在数据包的数据域里携带某些信息,这些信息用于建立其他的连接。因此,需要一些特殊的 helper来完成工作。
下面以FTP作为例子。FTP协议先建立一个单独的连接——FTP控制会话。我们通过这个连接发布命令,其 他的端口就会打开以便传输和这个命令相关的数据。这些连接的建立方法有两种:主动模式和被动模式。先 看看主动模式,FTP客户端发送端口和IP地址信 息给服务器端,然后,客户端打开这个端口,服务器端从它自己的20端口(FTP-Data端口号)建立与这个端 口的连接,接着就可以使用这个连接发送数据了。
问题在于防火墙不知道这些额外的连接(相对于控制会话而言),因为这些连接在建立时的磋商信息都 在协议数据包的数据域内,而不是在可分析的协议头里。因此,防火墙就不知道是不是该放这些从服务器到 客户机的连接过关。
解决的办法是为连接跟踪模块增加一个特殊的helper,以便能检测到那些信息。这样,那些从FTP服务器 到客户机的连接就可以被跟踪了,状态是RELATED,过程如下图所示:
被动FTP工作方式下,data连接的建立过程和主动FTP的相反。客户机告诉服务器需要某些数据,服务器 就把地址和端口发回给客户机,客户机据此建立连接接受数据。如果FTP服务器在防火墙后面,或你对用户 限制的比较严格,只允许他们访问HTTP和FTP,而封闭了其他所有端口,为了让在Internet是的客户机能访 问到FTP,也需要增加上面提到的helper。下面是被动模式下data连接的建立过程: